Local Constant Approximation for Dominating Set on Graphs Excluding Large Minors Marthe Bonamy ¹ Cyril Gavoille ¹ <u>Timothé Picavet</u> ¹ Alexandra Wesolek ² ¹LaBRI, U. Bordeaux ²TU Berlin ## The LOCAL model #### The LOCAL model #### The LOCAL model The network is also the input graph! #### Equivalence with number of rounds T Each vertex sees its distance-*T* neighborhood and decides its return value. #### Equivalence with number of rounds T Each vertex sees its distance-*T* neighborhood and decides its return value. $\mathsf{Algo} = \mathcal{A} : \underset{\mathsf{neighborhood}}{\mathsf{distance}\text{-}\mathsf{T}} \mapsto \underset{\mathsf{return}}{\mathsf{local}}$ ## An example: MINIMUM DOMINATING SET ## An example: MINIMUM DOMINATING SET #### Is all hope lost? #### Theorem (Kuhn, Moscibroda, and Wattenhofer, 2016) It is **impossible** to approximate MINIMUM DOMINATING SET with a constant number of rounds and constant approximation ratio on **general graphs**. #### Is all hope lost? #### Theorem (Kuhn, Moscibroda, and Wattenhofer, 2016) It is **impossible** to approximate MINIMUM DOMINATING SET with a constant number of rounds and constant approximation ratio on **general graphs**. ${f ilde Q}$ Restricting the graph class! ${f ilde Q}$ ## **Graph minors** H is a minor of G #### State of the art for MDS with $\mathcal{O}(1)$ LOCAL rounds | MINOR-FREE GRAPHS | lower | PPROX. RATIO
upper | #rounds | |--|------------------|--|----------------------------------| | trees (K ₃) | 3 ^[2] | 3 ^[2] | 1 | | outerplanar (K_4 , $K_{2,3}$) | 5 ^[3] | 5 ^[3] | 2 | | planar (<i>K</i> ₅ , <i>K</i> _{3,3}) | 7 ^[1] | $11 + \varepsilon^{[4]}$ | $\mathcal{O}_{arepsilon}(1)$ | | K _{2,t} -minor-free | 5 ^[3] | 2t — 1 | 3 | | | 5 ^[3] | 50 | \mathcal{O}_t (1) | | <i>K</i> _{3,t} -minor-free | 7 ^[1] | $(2+\varepsilon)\cdot(t+4)^{[4]}$ | $\mathcal{O}_{\varepsilon,t}(1)$ | | K _{s,t} -minor-free | 7 ^[1] | $t^{\mathcal{O}(st\sqrt{\log s})}$ [4] | $\mathcal{O}_t(1)$ | [4] O. Heydt, S. Kublenz, P. Ossona de Mendez, S. Siebertz, and A. Vigny. Distributed domination on sparse graph classes. European Journal of Combinatorics, 2025. ^[1] M. Hilke, C. Lenzen, and J. Suomela. Brief announcement: local approximability of minimum dominating set on planar graphs. PODC 2014. [2] Folklore ^[3] M. Bonamy, L. Cook, C. Groenland, and A. Wesolek. A tight local algorithm for the minimum dominating set problem in outerplanar graphs. DISC 2021. ## Example 1: trees ## Example 1: trees #### Theorem (folklore) $|\{v \in V(T) \mid \mathsf{deg}(v) \ge 2\}| \le 3 \cdot \mathsf{MDS}(T)$ Reusing the algorithm of trees? Reusing the algorithm of trees? \cdot Every vertex is in a bag (\Longrightarrow covering) Reusing the algorithm of trees? - \cdot Every vertex is in a bag (\Longrightarrow covering) - \cdot Diameter \leq girth/2 (\Longrightarrow to see a tree) # Reusing the algorithm of trees? - \cdot Every vertex is in a bag (\Longrightarrow covering) - Diameter \leq girth/2 (\Longrightarrow to see a tree) - \cdot Spacing bags of same color (\Longrightarrow no overcounting for fixed color) # Reusing the algorithm of trees? - Every vertex is in a bag (\implies covering) - Diameter \leq girth/2 (\Longrightarrow to see a tree) - \cdot Spacing bags of same color (\Longrightarrow no overcounting for fixed color) - Few colors (\Longrightarrow to limit overcounting) Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that • Cover: V(G) is partitionned by the B_i 's Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that • Cover: V(G) is partitionned by the B_i 's • Colors: each B_i 's receive a color $c(B_i) \in \{0, 1, ..., d\}$ Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that • Cover: V(G) is partitionned by the B_i 's - Colors: each B_i 's receive a color $c(B_i) \in \{0, 1, \dots, d\}$ - **Disjointness:** if $c(B_i) = c(B_j)$, then $dist(B_i, B_j) > r$ Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that • Cover: V(G) is partitionned by the B_i 's - Colors: each B_i 's receive a color $c(B_i) \in \{0, 1, \dots, d\}$ - **Disjointness:** if $c(B_i) = c(B_j)$, then $dist(B_i, B_j) > r$ • Boundedness: $\forall i$, diam_G(B_i) $\leq f(r)$ ## Example 1: the path (r = 3) Dimension = 1 (2 colors) with $$f(r) = r - 2$$ ## Example 2: the grid – attempt 1 (r = 2) Dimension ≤ 3 ## Example 2: the grid – attempt 2 (r = 2) Dimension = 2! #### Asymptotic dimension and graph minors Theorem (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, Scott, 2020) Every class excluding a fixed minor has asymptotic dimension ≤ 2 . ## Application: distributed algorithms How to use graph theory in distributed algorithms? ## Application: distributed algorithms How to use graph theory in distributed algorithms? Global concept Local concept ## Application: distributed algorithms How to use graph theory in distributed algorithms? Global concept Local concept #### Definition v is a r-local cutvertex if v is a cutvertex of $G[N^r[v]]$. #### Main theorem #### Theorem (main) On $K_{2,t}$ -minor-free graphs, there exists a constant-approximation (where the constant is **independent of t**) of MINIMUM DOMINATING SET in the LOCAL model, in f(t) rounds. #### Main theorem #### Theorem (main) On $K_{2,t}$ -minor-free graphs, there exists a constant-approximation (where the constant is **independent of t**) of MINIMUM DOMINATING SET in the LOCAL model, in f(t) rounds. Previous bound on H-minor-free graphs had $\Omega(|V(H)|)$ in g(H) rounds (Heydt, Kublenz, Ossona de Mendez, Siebertz, Vigny 2022). #### Main theorem #### Theorem (main) On $K_{2,t}$ -minor-free graphs, there exists a constant-approximation (where the constant is **independent of t**) of MINIMUM DOMINATING SET in the LOCAL model, in f(t) rounds. Previous bound on H-minor-free graphs had $\Omega(|V(H)|)$ in g(H) rounds (Heydt, Kublenz, Ossona de Mendez, Siebertz, Vigny 2022). Asymptotic dimension only used in the analysis! #### The algorithm $$Y_t(G) = \bigcup \{18t\text{-local cuts of size } \le 2\} \setminus \{\text{non-interesting vertices}\}$$ Algorithm = $Y_t(G) \cup [\text{brute-force on } G - Y_t(G)]$ #### Lemma 1 $$|Y_t(G)| = \mathcal{O}(d) \cdot MDS(G).$$ #### Lemma 2 If G is $K_{2,t}$ -minor-free, every connected component of $G - Y_t(G)$ has diameter $\mathcal{O}_t(1)$. ## Conclusion and perspectives #### Follow-up works: - H-minor-free graphs admit a 50-approximation if pathwidth(H) = 2. - · Constant factor approximations in locally-nice graphs, e.g. bounded genus. - Transform algorithms from a class ${\mathcal C}$ to a locally- {\mathcal C} class. ## Conclusion and perspectives #### Follow-up works: - H-minor-free graphs admit a 50-approximation if pathwidth(H) = 2. - · Constant factor approximations in locally-nice graphs, e.g. bounded genus. - Transform algorithms from a class $\mathcal C$ to a locally- $\mathcal C$ class. **?** Without minor $H \to \text{LOCAL } \mathcal{O}(\text{pathwidth}(H))$ -approximation in constant time ? ## Conclusion and perspectives #### Follow-up works: - H-minor-free graphs admit a 50-approximation if pathwidth(H) = 2. - · Constant factor approximations in locally-nice graphs, e.g. bounded genus. - \cdot Transform algorithms from a class $\mathcal C$ to a locally- $\mathcal C$ class. - **?** Without minor $H \to \text{LOCAL } \mathcal{O}(\text{pathwidth}(H))$ -approximation in constant time ?