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The LOCAL model

graph network

vertices
+

edges

computers
+

connections
UIDUID

The network is also the input graph!
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Equivalence with number of rounds T

Each vertex sees its distance-T
neighborhood and decides its
return value.

Algo = A : neighborhood
distance-T 7→ return value
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An example: MINIMUM DOMINATING SET
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Is all hope lost?

Theorem (Kuhn, Moscibroda, and Wattenhofer, 2016)
It is impossible to approximate MINIMUM DOMINATING SET with a constant
number of rounds and constant approximation ratio on general graphs.

Restricting the graph class!

5



Is all hope lost?

Theorem (Kuhn, Moscibroda, and Wattenhofer, 2016)
It is impossible to approximate MINIMUM DOMINATING SET with a constant
number of rounds and constant approximation ratio on general graphs.

Restricting the graph class!

5



Graph minors

H H′ G

H is a minor of G
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State of the art for MDS with O(1) LOCAL rounds

MINOR-FREE GRAPHS
APPROX. RATIO

#roundslower upper

trees (K3) 3[2] 3[2] 1
outerplanar (K4, K2,3) 5[3] 5[3] 2
planar (K5, K3,3) 7[1] 11+ ε[4] Oε(1)

K2,t-minor-free
5[3] 2t− 1 3
5[3] 50 Ot(1)

K3,t-minor-free 7[1] (2+ ε) · (t+ 4)[4] Oε,t(1)
Ks,t-minor-free 7[1] tO(st

√
log s) [4] Ot(1)

[1] M. Hilke, C. Lenzen, and J. Suomela. Brief announcement: local
approximability of minimum dominating set on planar graphs. PODC 2014.
[2] Folklore
[3] M. Bonamy, L. Cook, C. Groenland, and A. Wesolek. A tight local algorithm
for the minimum dominating set problem in outerplanar graphs. DISC 2021.

[4] O. Heydt, S. Kublenz, P. Ossona de Mendez, S. Siebertz, and A. Vigny.
Distributed domination on sparse graph classes. European Journal of
Combinatorics, 2025.
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Example 1: trees

Dominating Set
(one-round
computation)

Theorem (folklore)
|{v ∈ V(T) | deg(v) ≥ 2}| ≤ 3 ·MDS(T)
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Example 2: high girth graphs

girth = 7

Reusing the algorithm of trees?

• Every vertex is in a bag ( =⇒ covering)
• Diameter ≤ girth/2 ( =⇒ to see a tree)
• Spacing bags of same color ( =⇒ no overcounting for fixed color)
• Few colors ( =⇒ to limit overcounting)
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Asymptotic dimension

Asymptotic dimension of C is d if ∃f : N → N, ∀G ∈ C, ∀r ∈ N, ∃B1,B2, · · · ⊆ V(G),
such that

• Cover: V(G) is partitionned by the Bi’s

• Colors: each Bi’s receive a color c(Bi) ∈ {0, 1, . . . ,d}
• Disjointness: if c(Bi) = c(Bj), then dist(Bi,Bj) > r

• Boundedness: ∀i, diamG(Bi) ≤ f(r)
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Example 1: the path (r = 3)

Diameter 2 = f(3)Distance 4 = r+ 1

Dimension = 1 (2 colors)
with f(r) = r− 2
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Example 2: the grid – attempt 1 (r = 2)

Dimension ≤ 3
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Example 2: the grid – attempt 2 (r = 2)

Dimension = 2!
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Asymptotic dimension and graph minors

Theorem (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, Scott, 2020)
Every class excluding a fixed minor has asymptotic dimension ≤ 2.
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Application: distributed algorithms

How to use graph theory in distributed algorithms?

Global concept
↓

Local concept
Definition
v is a r-local cutvertex if
v is a cutvertex of
G [Nr[v]].

G
[
N3[v]

]
v
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Main theorem

Theorem (main)
On K2,t-minor-free graphs, there exists a constant-approximation (where the
constant is independent of t) of MINIMUM DOMINATING SET in the LOCAL model, in
f(t) rounds.

Previous bound on H-minor-free graphs had Ω(|V(H)|) in g(H) rounds (Heydt,
Kublenz, Ossona de Mendez, Siebertz, Vigny 2022).

Asymptotic dimension only used in the analysis!
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The algorithm

Yt(G) =
∪
{18t-local cuts of size ≤ 2} \ {non-interesting vertices}
Algorithm = Yt(G) ∪ [brute-force on G− Yt(G)]

Lemma 1
|Yt(G)| = O(d) ·MDS(G).

Lemma 2
If G is K2,t-minor-free, every
connected component of G− Yt(G)
has diameter Ot(1).
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Conclusion and perspectives

Follow-up works:

• H-minor-free graphs admit a 50-approximation if pathwidth(H) = 2.
• Constant factor approximations in locally-nice graphs, e.g. bounded genus.
• Transform algorithms from a class C to a locally-C class.

Without minor H → LOCAL O(pathwidth(H))-approximation in constant time ?

Thanks!
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