Local Constant Approximation for Dominating Set on Graphs Excluding Large Minors

Marthe Bonamy ¹ Cyril Gavoille ¹ <u>Timothé Picavet</u> ¹ Alexandra Wesolek ²

¹LaBRI, U. Bordeaux

²TU Berlin

The LOCAL model

The LOCAL model

The LOCAL model

The network is also the input graph!

Equivalence with number of rounds T

Each vertex sees its distance-*T* neighborhood and decides its return value.

Equivalence with number of rounds T

Each vertex sees its distance-*T* neighborhood and decides its return value.

 $\mathsf{Algo} = \mathcal{A} : \underset{\mathsf{neighborhood}}{\mathsf{distance}\text{-}\mathsf{T}} \mapsto \underset{\mathsf{return}}{\mathsf{local}}$

An example: MINIMUM DOMINATING SET

An example: MINIMUM DOMINATING SET

Is all hope lost?

Theorem (Kuhn, Moscibroda, and Wattenhofer, 2016)

It is **impossible** to approximate MINIMUM DOMINATING SET with a constant number of rounds and constant approximation ratio on **general graphs**.

Is all hope lost?

Theorem (Kuhn, Moscibroda, and Wattenhofer, 2016)

It is **impossible** to approximate MINIMUM DOMINATING SET with a constant number of rounds and constant approximation ratio on **general graphs**.

 ${f ilde Q}$ Restricting the graph class! ${f ilde Q}$

Graph minors

H is a minor of G

State of the art for MDS with $\mathcal{O}(1)$ LOCAL rounds

MINOR-FREE GRAPHS	lower	PPROX. RATIO upper	#rounds
trees (K ₃)	3 ^[2]	3 ^[2]	1
outerplanar (K_4 , $K_{2,3}$)	5 ^[3]	5 ^[3]	2
planar (<i>K</i> ₅ , <i>K</i> _{3,3})	7 ^[1]	$11 + \varepsilon^{[4]}$	$\mathcal{O}_{arepsilon}(1)$
K _{2,t} -minor-free	5 ^[3]	2t — 1	3
	5 ^[3]	50	\mathcal{O}_t (1)
<i>K</i> _{3,t} -minor-free	7 ^[1]	$(2+\varepsilon)\cdot(t+4)^{[4]}$	$\mathcal{O}_{\varepsilon,t}(1)$
K _{s,t} -minor-free	7 ^[1]	$t^{\mathcal{O}(st\sqrt{\log s})}$ [4]	$\mathcal{O}_t(1)$

[4] O. Heydt, S. Kublenz, P. Ossona de Mendez, S. Siebertz, and A. Vigny. Distributed domination on sparse graph classes. European Journal of Combinatorics, 2025.

^[1] M. Hilke, C. Lenzen, and J. Suomela. Brief announcement: local approximability of minimum dominating set on planar graphs. PODC 2014. [2] Folklore

^[3] M. Bonamy, L. Cook, C. Groenland, and A. Wesolek. A tight local algorithm for the minimum dominating set problem in outerplanar graphs. DISC 2021.

Example 1: trees

Example 1: trees

Theorem (folklore)

 $|\{v \in V(T) \mid \mathsf{deg}(v) \ge 2\}| \le 3 \cdot \mathsf{MDS}(T)$

Reusing the algorithm of trees?

Reusing the algorithm of trees?

 \cdot Every vertex is in a bag (\Longrightarrow covering)

Reusing the algorithm of trees?

- \cdot Every vertex is in a bag (\Longrightarrow covering)
- \cdot Diameter \leq girth/2 (\Longrightarrow to see a tree)

Reusing the algorithm of trees?

- \cdot Every vertex is in a bag (\Longrightarrow covering)
- Diameter \leq girth/2 (\Longrightarrow to see a tree)
- \cdot Spacing bags of same color (\Longrightarrow no overcounting for fixed color)

Reusing the algorithm of trees?

- Every vertex is in a bag (\implies covering)
- Diameter \leq girth/2 (\Longrightarrow to see a tree)
- \cdot Spacing bags of same color (\Longrightarrow no overcounting for fixed color)
- Few colors (\Longrightarrow to limit overcounting)

Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that

Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that

• Cover: V(G) is partitionned by the B_i 's

Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that

• Cover: V(G) is partitionned by the B_i 's

• Colors: each B_i 's receive a color $c(B_i) \in \{0, 1, ..., d\}$

Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that

• Cover: V(G) is partitionned by the B_i 's

- Colors: each B_i 's receive a color $c(B_i) \in \{0, 1, \dots, d\}$
- **Disjointness:** if $c(B_i) = c(B_j)$, then $dist(B_i, B_j) > r$

Asymptotic dimension of C is d if $\exists f : \mathbb{N} \to \mathbb{N}, \forall G \in C, \forall r \in \mathbb{N}, \exists B_1, B_2, \dots \subseteq V(G)$, such that

• Cover: V(G) is partitionned by the B_i 's

- Colors: each B_i 's receive a color $c(B_i) \in \{0, 1, \dots, d\}$
- **Disjointness:** if $c(B_i) = c(B_j)$, then $dist(B_i, B_j) > r$

• Boundedness: $\forall i$, diam_G(B_i) $\leq f(r)$

Example 1: the path (r = 3)

Dimension = 1 (2 colors)
with
$$f(r) = r - 2$$

Example 2: the grid – attempt 1 (r = 2)

Dimension ≤ 3

Example 2: the grid – attempt 2 (r = 2)

Dimension = 2!

Asymptotic dimension and graph minors

Theorem (Bonamy, Bousquet, Esperet, Groenland, Liu, Pirot, Scott, 2020) Every class excluding a fixed minor has asymptotic dimension ≤ 2 .

Application: distributed algorithms

How to use graph theory in distributed algorithms?

Application: distributed algorithms

How to use graph theory in distributed algorithms?

Global concept

Local concept

Application: distributed algorithms

How to use graph theory in distributed algorithms?

Global concept

Local concept

Definition

v is a r-local cutvertex if v is a cutvertex of $G[N^r[v]]$.

Main theorem

Theorem (main)

On $K_{2,t}$ -minor-free graphs, there exists a constant-approximation (where the constant is **independent of t**) of MINIMUM DOMINATING SET in the LOCAL model, in f(t) rounds.

Main theorem

Theorem (main)

On $K_{2,t}$ -minor-free graphs, there exists a constant-approximation (where the constant is **independent of t**) of MINIMUM DOMINATING SET in the LOCAL model, in f(t) rounds.

Previous bound on H-minor-free graphs had $\Omega(|V(H)|)$ in g(H) rounds (Heydt, Kublenz, Ossona de Mendez, Siebertz, Vigny 2022).

Main theorem

Theorem (main)

On $K_{2,t}$ -minor-free graphs, there exists a constant-approximation (where the constant is **independent of t**) of MINIMUM DOMINATING SET in the LOCAL model, in f(t) rounds.

Previous bound on H-minor-free graphs had $\Omega(|V(H)|)$ in g(H) rounds (Heydt, Kublenz, Ossona de Mendez, Siebertz, Vigny 2022).

Asymptotic dimension only used in the analysis!

The algorithm

$$Y_t(G) = \bigcup \{18t\text{-local cuts of size } \le 2\} \setminus \{\text{non-interesting vertices}\}$$

Algorithm = $Y_t(G) \cup [\text{brute-force on } G - Y_t(G)]$

Lemma 1

$$|Y_t(G)| = \mathcal{O}(d) \cdot MDS(G).$$

Lemma 2

If G is $K_{2,t}$ -minor-free, every connected component of $G - Y_t(G)$ has diameter $\mathcal{O}_t(1)$.

Conclusion and perspectives

Follow-up works:

- H-minor-free graphs admit a 50-approximation if pathwidth(H) = 2.
- · Constant factor approximations in locally-nice graphs, e.g. bounded genus.
- Transform algorithms from a class ${\mathcal C}$ to a locally- {\mathcal C} class.

Conclusion and perspectives

Follow-up works:

- H-minor-free graphs admit a 50-approximation if pathwidth(H) = 2.
- · Constant factor approximations in locally-nice graphs, e.g. bounded genus.
- Transform algorithms from a class $\mathcal C$ to a locally- $\mathcal C$ class.

? Without minor $H \to \text{LOCAL } \mathcal{O}(\text{pathwidth}(H))$ -approximation in constant time ?

Conclusion and perspectives

Follow-up works:

- H-minor-free graphs admit a 50-approximation if pathwidth(H) = 2.
- · Constant factor approximations in locally-nice graphs, e.g. bounded genus.
- \cdot Transform algorithms from a class $\mathcal C$ to a locally- $\mathcal C$ class.
- **?** Without minor $H \to \text{LOCAL } \mathcal{O}(\text{pathwidth}(H))$ -approximation in constant time ?

