Locally finding small dominating sets in $K_{2,t}$ -minor-free graphs

Marthe Bonamy ¹ <u>Timothé Picavet</u> ¹ Alexandra Wesolek ²

¹LaBRI, Bordeaux

²Simon Fraser University

Distributed algorithms

Centralized

Distributed algorithm

Distributed algorithms

Centralized Focused on computing

Distributed algorithm

• Real world fact:

transfer 1 bit in a local network \iff

M. Bonamy, T. Picavet, A. Wesolek DS in K_{2,t}-minor-free graphs

Real world fact:

transfer 1 bit in a local network \iff

do 1 billion arithmetic operations on a computer

Real world fact:

transfer 1 bit in a local network \iff do 1 billion arithmetic operations on a computer (both take ≈ 0.5 ms)

• Real world fact:

transfer 1 bit in a local network \iff

do 1 billion arithmetic operations on a computer (both take \approx 0.5 ms)

• Therefore, each vertex/computer has an infinite computing power

• Real world fact:

transfer 1 bit in a local network \iff

do 1 billion arithmetic operations on a computer (both take \approx 0.5 ms)

- Therefore, each vertex/computer has an infinite computing power
- Difficulty of a problem = number of *rounds* required to solve it.

Every vertex runs the same algorithm and has independent memory

Every vertex runs the same algorithm and has independent memory Every round, every vertex:

1 sends synchronously messages to its neighbors,

Every vertex runs the same algorithm and has independent memory Every round, every vertex:

- sends synchronously messages to its neighbors,
- 2 receives messages from its neighbors,

Every vertex runs the same algorithm and has independent memory Every round, every vertex:

- 1 sends synchronously messages to its neighbors,
- 2 receives messages from its neighbors,
- 3 computes something with its newly acquired information

Every vertex runs the same algorithm and has independent memory Every round, every vertex:

- 1 sends synchronously messages to its neighbors,
- 2 receives messages from its neighbors,
- 3 computes something with its newly acquired information
- 4 can return a local return value

Every vertex runs the same algorithm and has independent memory Every round, every vertex:

- 1 sends synchronously messages to its neighbors,
- 2 receives messages from its neighbors,
- 3 computes something with its newly acquired information
- 4 can return a local return value

Return value of the algorithm: $\{(v, col(v)) \mid v \in V(G)\}$

Every vertex runs the same algorithm and has independent memory Every round, every vertex:

- 1 sends synchronously messages to its neighbors,
- 2 receives messages from its neighbors,
- 3 computes something with its newly acquired information
- 4 can return a local return value

Return value of the algorithm: $\{v \in V(G)\} \mid v \text{ returns } 1\}$

• Unique identifier per vertex

- Unique identifier per vertex
- No shared memory: every vertex only knows its ID + the info given by its neighbors.

- Unique identifier per vertex
- No shared memory: every vertex only knows its ID + the info given by its neighbors.
- Only way to get info: communicate

Equivalent formulation of the \mathcal{LOCAL} model

r-round algorithm \iff no communication but every vertex *v* knows $N_r[v]$ and the corresponding IDs.

Equivalent formulation of the \mathcal{LOCAL} model

r-round algorithm \iff no communication but every vertex *v* knows $N_r[v]$ and the corresponding IDs. After 2 rounds:

Graph minors

H is a minor of G

Minimum Dominating Set

 $D \subseteq V(G)$ is a dominating set iff N[D] = V(G)

Minimum Dominating Set

 $D \subseteq V(G)$ is a dominating set iff N[D] = V(G)

• In the centralized model: NP-complete (Karp) and hard to approximate.

Minimum Dominating Set

 $D \subseteq V(G)$ is a dominating set iff N[D] = V(G)

- In the centralized model: NP-complete (Karp) and hard to approximate.
- But hard in the centralized model \iff hard in the \mathcal{LOCAL} model.

Differences in complexities between \mathcal{LOCAL} and centralized

Maximum Independent Set when ∃ universal vertex

Easy in \mathcal{LOCAL} Hard in centralized

Detecting Cycles

Hard in \mathcal{LOCAL} Easy in centralized

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but very large factor (Kublenz, Siebertz and Vigny 2021)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but very large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - 20-approximation (Heydt, Siebertz and Vigny 2021)
 - Lower bound: 7 (Hilke, Lenzen et Suomela 2014)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but very large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - 20-approximation (Heydt, Siebertz and Vigny 2021)
 - Lower bound: 7 (Hilke, Lenzen et Suomela 2014)
- Outerplanar graphs
 - 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but very large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - 20-approximation (Heydt, Siebertz and Vigny 2021)
 - Lower bound: 7 (Hilke, Lenzen et Suomela 2014)
- Outerplanar graphs
 - 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)
- *K*_{2,*t*}-minor-free graphs
 - (2t-1)-approximation
 - Generalizes the outerplanar result

The algorithm

Proof 00000

The algorithm

• Make G twinless (no vertices s.t. N[u] = N[v])

The algorithm

• Make G twinless (no vertices s.t. N[u] = N[v])

The algorithm

• Make G twinless (no vertices s.t. N[u] = N[v])

• Return $D_2 = \{v \in V(G) | \neg \exists u \in V(G - v), N[v] \subseteq N[u]\}$

Proof 000000

The algorithm

• Make G twinless (no vertices s.t. N[u] = N[v])

• Return $D_2 = \{v \in V(G) | \neg \exists u \in V(G - v), N[v] \subseteq N[u]\}$

Approximation factor

$D_2 = \{v \in V(G) | \neg \exists u \in V(G - v), N[v] \subseteq N[u]\}$

Theorem

Let D a MDS of G. If G is $K_{2,t}$ -minor-free, then $|D_2| \leq (2t-1)|D|$.

Lemma

Let D a MDS of G. Then $\exists H \text{ minor of } G$ of the form:

Lemma

Let D a MDS of G. Then $\exists H \text{ minor of } G$ of the form:

Lemma

Let $D = \{d_1, d_2, \dots, d_k\}$ a MDS of G. Then there exists H minor of G s.t.:

- $V(H) = A \sqcup D$ and $A \subseteq D_2 \setminus D$
- $|A| \geq \frac{1}{2}|D_2 \setminus D|$
- $\forall a \in A, |N(a) \cap D| \geq 2$

Lemma

Let $D = \{d_1, d_2, \dots, d_k\}$ a MDS of G. Then there exists H minor of G s.t.:

- $V(H) = A \sqcup D$ and $A \subseteq D_2 \setminus D$
- $|A| \geq \frac{1}{2}|D_2 \setminus D|$
- $\forall a \in A, |N(a) \cap D| \geq 2$

Proof:

• Contract the branch sets $b_i = N[d_i] \setminus (D_2 \setminus D \cup \bigcup_{j < i} N[d_i] \cup \{d_{i+1}, \dots, d_k\})$

Lemma

Let $D = \{d_1, d_2, \dots, d_k\}$ a MDS of G. Then there exists H minor of G s.t.:

- $V(H) = A \sqcup D$ and $A \subseteq D_2 \setminus D$
- $|A| \geq \frac{1}{2}|D_2 \setminus D|$
- $\forall a \in A, |N(a) \cap D| \geq 2$

Proof:

- Contract the branch sets $b_i = N[d_i] \setminus (D_2 \setminus D \cup \bigcup_{j < i} N[d_i] \cup \{d_{i+1}, \dots, d_k\})$
- For $v \in D_2 \setminus D$, $d_H(v) \ge 2$

Lemma

Let $D = \{d_1, d_2, \dots, d_k\}$ a MDS of G. Then there exists H minor of G s.t.:

- $V(H) = A \sqcup D$ and $A \subseteq D_2 \setminus D$
- $|A| \geq \frac{1}{2}|D_2 \setminus D|$
- $\forall a \in A, |N(a) \cap D| \geq 2$

Proof:

- Contract the branch sets $b_i = N[d_i] \setminus (D_2 \setminus D \cup \bigcup_{j < i} N[d_i] \cup \{d_{i+1}, \dots, d_k\})$
- For $v \in D_2 \setminus D$, $d_H(v) \ge 2$
- Contract some edges so that every vertex left in $D_2 \setminus D$ has 2 neighbors in D

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Lemma

Let H be the previous minor. On a $K_{2,t}$ -minor-free graph, $|A| \leq (t-1)|D|$.

(#red edges incident to $v) + |N(v) \cap A| \le t - 1$

Take $v \notin D_2$.

Take $v \notin D_2$. Take u s.t. $N[v] \subsetneq N[u]$ with N[u] maximal.

Take $v \notin D_2$. Take u s.t. $N[v] \subsetneq N[u]$ with N[u] maximal.

Take $v \notin D_2$. Take u s.t. $N[v] \subsetneq N[u]$ with N[u] maximal.

Then $u \in D_2$.

• (2t - 1)-approx for $K_{2,t}$ -minor-free graphs (first "linear" approximation factor).

- (2t 1)-approx for $K_{2,t}$ -minor-free graphs (first "linear" approximation factor).
- Tight? We think there is a 5-approximation on $K_{2,t}$ -minor-free graphs.

- (2t 1)-approx for $K_{2,t}$ -minor-free graphs (first "linear" approximation factor).
- Tight? We think there is a 5-approximation on $K_{2,t}$ -minor-free graphs.
- Open questions: can we get small approximation factors for $K_{s,t}$ and H-minor-free graphs?

- (2t 1)-approx for $K_{2,t}$ -minor-free graphs (first "linear" approximation factor).
- Tight? We think there is a 5-approximation on $K_{2,t}$ -minor-free graphs.
- Open questions: can we get small approximation factors for $K_{s,t}$ and *H*-minor-free graphs?

Thank you!