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The LOCAL model, motivation

® Real world fact:

transfer 1 bit in a local network
<

do 1 billion arithmetic operations on a computer
(both take ~ 0.5 ms)

® Therefore, each vertex/computer has an infinite computing power

e Difficulty of a problem = number of rounds required to solve it.
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The LOCAL model, definition

Every vertex runs the same algorithm and has independent memory
Every round, every vertex:

@ sends synchronously messages to its neighbors,

@® receives messages from its neighbors,

©® computes something with its newly acquired information

M. Bonamy, T. Picavet, A. Wesolek DS in Kz ¢-minor-free graphs 4/19



Introduction ©O0®0000000O The algorithm o Proof 000000 Conclusion ©

The LOCAL model, definition

Every vertex runs the same algorithm and has independent memory
Every round, every vertex:

@ sends synchronously messages to its neighbors,

@® receives messages from its neighbors,

©® computes something with its newly acquired information

O can return a local return value

M. Bonamy, T. Picavet, A. Wesolek DS in Kz ¢-minor-free graphs 4/19



Introduction ©O0®0000000O The algorithm o Proof 000000 Conclusion ©

The LOCAL model, definition

Every vertex runs the same algorithm and has independent memory
Every round, every vertex:

@ sends synchronously messages to its neighbors,

@® receives messages from its neighbors,

©® computes something with its newly acquired information

O can return a local return value

Return value of the algorithm: {(v,col(v)) | v € V(G)}
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The LOCAL model, definition

Every vertex runs the same algorithm and has independent memory
Every round, every vertex:

@ sends synchronously messages to its neighbors,

@® receives messages from its neighbors,

©® computes something with its newly acquired information

O can return a local return value

Return value of the algorithm: {(v,col(v)) | v € V(G)}

Return value of the algorithm: {v € V(G)) | v returns 1}
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e Unique identifier per vertex

® No shared memory: every vertex only knows its ID + the info given by
its neighbors.

® Only way to get info: communicate




r-round algorithm <= no communication but every vertex v knows N,[v]
and the corresponding IDs.



r-round algorithm <= no communication but every vertex v knows N,[v]

and the corresponding IDs.
After 2 rounds:
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Graph minors

H H’ G

H is a minor of G
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Minimum Dominating Set

C V(G) is a dominating set iff N[D] = V(G)
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Minimum Dominating Set

C V(G) is a dominating set iff N[D] = V(G)

¢ In the centralized model: NP-complete (Karp) and hard to
approximate.
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Minimum Dominating Set

LA

C V(G) is a dominating set iff N[D] = V(G)

¢ In the centralized model: NP-complete (Karp) and hard to
approximate.

® But hard in the centralized model <% hard in the LOCAL model.
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Differences in complexities between LOCAL and centralized

Maximum Independent Set
when 3 universal vertex

L ./~.

Detecting Cycles
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Easy in LOCAL Hard in LOCAL
Hard in centralized Easy in centralized

M. Bonamy, T. Picavet, A. Wesolek DS in Kz ¢-minor-free graphs 10/19



® General graphs

® No constant factor approximation (Kuhn, Moscibroda and Wattenhofer
2016)



® General graphs
® No constant factor approximation (Kuhn, Moscibroda and Wattenhofer
2016)
® H-minor-free graphs
® Constant factor approximation, but very large factor (Kublenz, Siebertz
and Vigny 2021)



Introduction ©000000000® The algorithm o Proof 000000 Conclusion ©

State of the art for MDS with O(1) rounds

® General graphs
® No constant factor approximation (Kuhn, Moscibroda and Wattenhofer
2016)
® H-minor-free graphs
® Constant factor approximation, but very large factor (Kublenz, Siebertz
and Vigny 2021)
® Planar graphs

® 20-approximation (Heydt, Siebertz and Vigny 2021)
® Lower bound: 7 (Hilke, Lenzen et Suomela 2014)
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® H-minor-free graphs
® Constant factor approximation, but very large factor (Kublenz, Siebertz
and Vigny 2021)
® Planar graphs

® 20-approximation (Heydt, Siebertz and Vigny 2021)
® Lower bound: 7 (Hilke, Lenzen et Suomela 2014)

e Quterplanar graphs
® 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)
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State of the art for MDS with O(1) rounds

® General graphs

® No constant factor approximation (Kuhn, Moscibroda and Wattenhofer
2016)

® H-minor-free graphs
® Constant factor approximation, but very large factor (Kublenz, Siebertz
and Vigny 2021)
[

Planar graphs

® 20-approximation (Heydt, Siebertz and Vigny 2021)
® Lower bound: 7 (Hilke, Lenzen et Suomela 2014)

Outerplanar graphs
® 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)

K> t-minor-free graphs

® (2t — 1)-approximation
® Generalizes the outerplanar result
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® Make G twinless (no vertices s.t. N[u] = N[v])
3 2
® [ o
6 5 6

® Return D, = {v € V(G)|-3u € V(G — v), N[v] C N[u]}
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The algorithm

® Make G twinless (no vertices s.t. N[u] = NJ[v])

1 2 3 2

— o
XN — I\
4 5 6 5 6

® Return D, = {v € V(G)|-3u € V(G — v), N[v] C N[u]}

¢ Do

— .\
c Dz\./
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= {ve V(G)|-Tue V(G — v),N[v] C N[u]}

/\
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Let D a MDS of G. If G is Ky ¢-minor-free, then |D>| < (2t — 1)|D]. l

o o ¢ D




Part 1: approximation factor

Lemma
Let D a MDS of G. Then 3H minor of G of the form:

NP\

with: "
A= 2105\ D)
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Part 1: approximation factor

Lemma
Let D a MDS of G. Then 3H minor of G of the form:

NP\

with: "
A= 2105\ D)

Vae A |N(a) N D| > 2
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Let D ={d,da,...,dx} a MDS of G. Then there exists H minor of G
s.t.:

e V(H)=AUD and AC D,\ D
* |Al > 3|D2\ D
* Vac A|N(a)nD|>2
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Proof part 1: approximation factor

Lemma

Let D ={di,d>,...,dc} a MDS of G. Then there exists H minor of G
s.t.:

o V(H)=AUD and AC D,\ D
* |Al > 3Dz \ D|
° Vac A |N(a)ND|>2

Proof:
e Contract the branch sets
bi = N[d,] \ (D2 \ DU Uj<i N[d,] U {di+17 ce dk})
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o V(H)=AUD and AC D,\ D
* |Al > 3Dz \ D|
° Vac A |N(a)ND|>2

Proof:
e Contract the branch sets
b; = N[d,] \ (D2 \ DuU Uj<i N[d,] U {di+17 ce dk})
e Forve D\ D, dy(v) >2
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Proof part 1: approximation factor

Lemma

Let D ={di,d>,...,dc} a MDS of G. Then there exists H minor of G
s.t.:

o V(H)=AUD and AC D,\ D
* |Al > 31D:\ D|
° Vac A |N(a)ND|>2

Proof:
e Contract the branch sets
b; = N[d,] \ (D2 \ DuU Uj<i N[d,] U {di+17 ce dk})
e Forve D\ D, dy(v) >2
e Contract some edges so that every vertex left in Dy \ D has 2
neighbors in D

M. Bonamy, T. Picavet, A. Wesolek DS in Kz ¢-minor-free graphs 15 /19



Let H be the previous minor. On a Ky s-minor-free graph, |A| < (t —1)|D]. l




Lemma
Let H be the previous minor. On a Ky s-minor-free graph, |A| < (t — 1)|D|J




Lemma
Let H be the previous minor. On a Ky s-minor-free graph, |A| < (t — 1)|D|J




Lemma
Let H be the previous minor. On a Ky s-minor-free graph, |A| < (t — 1)|D|J




Lemma
Let H be the previous minor. On a Ky s-minor-free graph, |A| < (t — 1)|D|J




Lemma
Let H be the previous minor. On a Ky s-minor-free graph, |A| < (t — 1)|D|J




Lemma
Let H be the previous minor. On a K ¢-minor-free graph,

Al<(t- 1)|D|.J




Lemma
Let H be the previous minor. On a K3 ;-minor-free graph,

Al<(t- 1)|D|.J




Lemma

A< (t- 1)|D|.J

Let H be the previous minor. On a K3 ;-minor-free graph,

(#red edges incident to v) + [N(v) NA| <t —1



Take v ¢ Ds.
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Then 1 € Ds.
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Conclusion and perspectives

® (2t — 1)-approx for Ky ¢-minor-free graphs (first “linear” approximation
factor).

® Tight? We think there is a 5-approximation on K> ;-minor-free graphs.

® Open questions: can we get small approximation factors for K ; and
H-minor-free graphs?

Thank you!
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