## Locally finding small dominating sets in $K_{2, t}$-minor-free graphs

Marthe Bonamy ${ }^{1}$ Timothé Picavet ${ }^{1}$ Alexandra Wesolek ${ }^{2}$<br>${ }^{1}$ LaBRI, Bordeaux<br>${ }^{2}$ Simon Fraser University

## Distributed algorithms

Centralized


Distributed algorithm


## Distributed algorithms

Centralized


Focused on computing

Distributed algorithm


Focused on communication

## The $\mathcal{L O C} \mathcal{A} \mathcal{L}$ model, motivation

- Real world fact:
transfer 1 bit in a local network



## The $\mathcal{L O C} \mathcal{A} \mathcal{L}$ model, motivation

- Real world fact:
transfer 1 bit in a local network

do 1 billion arithmetic operations on a computer


## The $\mathcal{L O C} \mathcal{A} \mathcal{L}$ model, motivation

- Real world fact:
transfer 1 bit in a local network

do 1 billion arithmetic operations on a computer
(both take $\approx 0.5 \mathrm{~ms}$ )


## The $\mathcal{L O C} \mathcal{A} \mathcal{L}$ model, motivation

- Real world fact:
transfer 1 bit in a local network

do 1 billion arithmetic operations on a computer (both take $\approx 0.5 \mathrm{~ms}$ )
- Therefore, each vertex/computer has an infinite computing power


## The $\mathcal{L O C} \mathcal{A} \mathcal{L}$ model, motivation

- Real world fact:
transfer 1 bit in a local network

do 1 billion arithmetic operations on a computer (both take $\approx 0.5 \mathrm{~ms}$ )
- Therefore, each vertex/computer has an infinite computing power
- Difficulty of a problem $=$ number of rounds required to solve it.


## The $\mathcal{L O C} \mathcal{A L}$ model, definition

Every vertex runs the same algorithm and has independent memory

## The $\mathcal{L O C} \mathcal{A L}$ model, definition

Every vertex runs the same algorithm and has independent memory Every round, every vertex:
(1) sends synchronously messages to its neighbors,

## The $\mathcal{L O C} \mathcal{A L}$ model, definition

Every vertex runs the same algorithm and has independent memory Every round, every vertex:
(1) sends synchronously messages to its neighbors,
(2) receives messages from its neighbors,

## The $\mathcal{L O C} \mathcal{A L}$ model, definition

Every vertex runs the same algorithm and has independent memory Every round, every vertex:
(1) sends synchronously messages to its neighbors,
(2) receives messages from its neighbors,
(3) computes something with its newly acquired information

## The $\mathcal{L O C} \mathcal{A L}$ model, definition

Every vertex runs the same algorithm and has independent memory Every round, every vertex:
(1) sends synchronously messages to its neighbors,
(2) receives messages from its neighbors,
(3) computes something with its newly acquired information
(4) can return a local return value

## The $\mathcal{L O C} \mathcal{A L}$ model, definition

Every vertex runs the same algorithm and has independent memory Every round, every vertex:
(1) sends synchronously messages to its neighbors,
(2) receives messages from its neighbors,
(3) computes something with its newly acquired information
(4) can return a local return value


Return value of the algorithm: $\{(v, \operatorname{col}(v)) \mid v \in V(G)\}$

## The $\mathcal{L O C} \mathcal{A L}$ model, definition

Every vertex runs the same algorithm and has independent memory Every round, every vertex:
(1) sends synchronously messages to its neighbors,
(2) receives messages from its neighbors,
(3) computes something with its newly acquired information
(4) can return a local return value


Return value of the algorithm: $\{(v, \operatorname{col}(v)) \mid v \in V(G)\}$


Return value of the algorithm: $\{v \in V(G)) \mid v$ returns 1$\}$

## Identifiers and information



## Identifiers and information



- Unique identifier per vertex


## Identifiers and information



- Unique identifier per vertex
- No shared memory: every vertex only knows its ID + the info given by its neighbors.


## Identifiers and information



- Unique identifier per vertex
- No shared memory: every vertex only knows its ID + the info given by its neighbors.
- Only way to get info: communicate


## Equivalent formulation of the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ model

$r$-round algorithm $\Longleftrightarrow$ no communication but every vertex $v$ knows $N_{r}[v]$ and the corresponding IDs.

## Equivalent formulation of the $\mathcal{L O C} \mathcal{A} \mathcal{L}$ model

$r$-round algorithm $\Longleftrightarrow$ no communication but every vertex $v$ knows $N_{r}[v]$ and the corresponding IDs.
After 2 rounds:


## Graph minors



H

$H^{\prime}$


G
$H$ is a minor of $G$

## $K_{2,4}$

## Instance of a $K_{2,4}$ minor in $G$



## Minimum Dominating Set


$D \subseteq V(G)$ is a dominating set iff $N[D]=V(G)$

## Minimum Dominating Set


$D \subseteq V(G)$ is a dominating set iff $N[D]=V(G)$

- In the centralized model: NP-complete (Karp) and hard to approximate.


## Minimum Dominating Set


$D \subseteq V(G)$ is a dominating set iff $N[D]=V(G)$

- In the centralized model: NP-complete (Karp) and hard to approximate.
- But hard in the centralized model $\Longleftrightarrow$ hard in the $\mathcal{L O C A} \mathcal{L}$ model.


## Differences in complexities between $\mathcal{L O C \mathcal { A }}$ and centralized

Maximum Independent Set when $\exists$ universal vertex


Easy in $\mathcal{L O C A L}$ Hard in centralized

## Detecting Cycles



Hard in $\mathcal{L O C A L}$ Easy in centralized

## State of the art for MDS with $\mathcal{O}(1)$ rounds

- General graphs
- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)


## State of the art for MDS with $\mathcal{O}(1)$ rounds

- General graphs
- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- H-minor-free graphs
- Constant factor approximation, but very large factor (Kublenz, Siebertz and Vigny 2021)


## State of the art for MDS with $\mathcal{O}(1)$ rounds

- General graphs
- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- H-minor-free graphs
- Constant factor approximation, but very large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
- 20-approximation (Heydt, Siebertz and Vigny 2021)
- Lower bound: 7 (Hilke, Lenzen et Suomela 2014)


## State of the art for MDS with $\mathcal{O}(1)$ rounds

- General graphs
- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- H-minor-free graphs
- Constant factor approximation, but very large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
- 20-approximation (Heydt, Siebertz and Vigny 2021)
- Lower bound: 7 (Hilke, Lenzen et Suomela 2014)
- Outerplanar graphs
- 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)


## State of the art for MDS with $\mathcal{O}(1)$ rounds

- General graphs
- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- H-minor-free graphs
- Constant factor approximation, but very large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
- 20-approximation (Heydt, Siebertz and Vigny 2021)
- Lower bound: 7 (Hilke, Lenzen et Suomela 2014)
- Outerplanar graphs
- 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)
- $\underline{K_{2, t}-\text { minor-free graphs }}$
- $(2 t-1)$-approximation
- Generalizes the outerplanar result


## The algorithm

## The algorithm

- Make $G$ twinless (no vertices s.t. $N[u]=N[v]$ )


## The algorithm

- Make $G$ twinless (no vertices s.t. $N[u]=N[v]$ )



## The algorithm

- Make $G$ twinless (no vertices s.t. $N[u]=N[v]$ )

- Return $D_{2}=\{v \in V(G) \mid \neg \exists u \in V(G-v), N[v] \subseteq N[u]\}$


## The algorithm

- Make $G$ twinless (no vertices s.t. $N[u]=N[v]$ )

- Return $D_{2}=\{v \in V(G) \mid \neg \exists u \in V(G-v), N[v] \subseteq N[u]\}$



## Approximation factor

$$
D_{2}=\{v \in V(G) \mid \neg \exists u \in V(G-v), N[v] \subseteq N[u]\}
$$

Theorem
Let $D$ a MDS of $G$. If $G$ is $K_{2, t}$-minor-free, then $\left|D_{2}\right| \leq(2 t-1)|D|$.

## Part 1: approximation factor

## Lemma

Let $D$ a MDS of $G$. Then $\exists H$ minor of $G$ of the form:

with:

$$
|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right|
$$

## Part 1: approximation factor

## Lemma

Let $D$ a MDS of $G$. Then $\exists H$ minor of $G$ of the form:

with:

$$
\begin{gathered}
|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right| \\
\forall a \in A,|N(a) \cap D| \geq 2
\end{gathered}
$$

## Proof part 1: approximation factor

## Lemma

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ a MDS of $G$. Then there exists $H$ minor of $G$ s.t.:

- $V(H)=A \sqcup D$ and $A \subseteq D_{2} \backslash D$
- $|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right|$
- $\forall a \in A,|N(a) \cap D| \geq 2$


## Proof part 1: approximation factor

## Lemma

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ a MDS of $G$. Then there exists $H$ minor of $G$ s.t.:

- $V(H)=A \sqcup D$ and $A \subseteq D_{2} \backslash D$
- $|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right|$
- $\forall a \in A,|N(a) \cap D| \geq 2$


## Proof:

- Contract the branch sets

$$
b_{i}=N\left[d_{i}\right] \backslash\left(D_{2} \backslash D \cup \bigcup_{j<i} N\left[d_{i}\right] \cup\left\{d_{i+1}, \ldots, d_{k}\right\}\right)
$$

## Proof part 1: approximation factor

## Lemma

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ a MDS of $G$. Then there exists $H$ minor of $G$ s.t.:

- $V(H)=A \sqcup D$ and $A \subseteq D_{2} \backslash D$
- $|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right|$
- $\forall a \in A,|N(a) \cap D| \geq 2$


## Proof:

- Contract the branch sets

$$
b_{i}=N\left[d_{i}\right] \backslash\left(D_{2} \backslash D \cup \bigcup_{j<i} N\left[d_{i}\right] \cup\left\{d_{i+1}, \ldots, d_{k}\right\}\right)
$$

- For $v \in D_{2} \backslash D, d_{H}(v) \geq 2$


## Proof part 1: approximation factor

## Lemma

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ a MDS of $G$. Then there exists $H$ minor of $G$ s.t.:

- $V(H)=A \sqcup D$ and $A \subseteq D_{2} \backslash D$
- $|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right|$
- $\forall a \in A,|N(a) \cap D| \geq 2$


## Proof:

- Contract the branch sets

$$
b_{i}=N\left[d_{i}\right] \backslash\left(D_{2} \backslash D \cup \bigcup_{j<i} N\left[d_{i}\right] \cup\left\{d_{i+1}, \ldots, d_{k}\right\}\right)
$$

- For $v \in D_{2} \backslash D, d_{H}(v) \geq 2$
- Contract some edges so that every vertex left in $D_{2} \backslash D$ has 2 neighbors in $D$


## Part 2: bound $\left|D_{2} \backslash D\right|$

## Lemma

Let $H$ be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.

## Part 2: bound $\left|D_{2} \backslash D\right|$

## Lemma

Let $H$ be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.


## Part 2: bound $\left|D_{2} \backslash D\right|$

## Lemma

Let $H$ be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.


## Part 2: bound $\left|D_{2} \backslash D\right|$

## Lemma

Let $H$ be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.


## Part 2: bound $\left|D_{2} \backslash D\right|$

## Lemma

Let $H$ be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.


## Part 2: bound $\left|D_{2} \backslash D\right|$

## Lemma

Let $H$ be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.


## Part 2: bound $\left|D_{2} \backslash D\right|$

## Lemma

Let $H$ be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.


## Part 2: bound $\left|D_{2} \backslash D\right|$

## Lemma

Let $H$ be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.


## Part 2: bound $\left|D_{2} \backslash D\right|$

## Lemma

Let $H$ be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.

(\#red edges incident to $v$ ) $+|N(v) \cap A| \leq t-1$

## Proof 3: $D_{2}$ is a dominating set

Take $v \notin D_{2}$.

## Proof 3: $D_{2}$ is a dominating set

Take $v \notin D_{2}$.
Take $u$ s.t. $N[v] \subsetneq N[u]$ with $N[u]$ maximal.

## Proof 3: $D_{2}$ is a dominating set

Take $v \notin D_{2}$.
Take $u$ s.t. $N[v] \subsetneq N[u]$ with $N[u]$ maximal.


## Proof 3: $D_{2}$ is a dominating set

Take $v \notin D_{2}$.
Take $u$ s.t. $N[v] \subsetneq N[u]$ with $N[u]$ maximal.


Then $u \in D_{2}$.

## Conclusion and perspectives

## Conclusion and perspectives

- $(2 t-1)$-approx for $K_{2, t}$-minor-free graphs (first "linear" approximation factor).


## Conclusion and perspectives

- $(2 t-1)$-approx for $K_{2, t}$-minor-free graphs (first "linear" approximation factor).
- Tight? We think there is a 5-approximation on $K_{2, t}$-minor-free graphs.


## Conclusion and perspectives

- $(2 t-1)$-approx for $K_{2, t}$-minor-free graphs (first "linear" approximation factor).
- Tight? We think there is a 5 -approximation on $K_{2, t}$-minor-free graphs.
- Open questions: can we get small approximation factors for $K_{s, t}$ and $H$-minor-free graphs?


## Conclusion and perspectives

- $(2 t-1)$-approx for $K_{2, t}$-minor-free graphs (first "linear" approximation factor).
- Tight? We think there is a 5 -approximation on $K_{2, t}$-minor-free graphs.
- Open questions: can we get small approximation factors for $K_{s, t}$ and $H$-minor-free graphs?


## Thank you!

