A parameterized approximation scheme for the 2D-Knapsack problem with wide items

Mathieu Mari

University of Warsaw and IDEAS-NCBR

Timothé Picavet

ENS de Lyon
Now at LaBRI, Bordeaux

Now at LIRMM, Montpellier

What is 2D-KnAPSACK?

What is known about 2D-KnapsAck?

${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019
${ }^{2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015
${ }^{3}$ W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

What is known about 2D-KnapsAck?

- NP-Hard (by reduction to Knapsack)
${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019
${ }^{2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015
${ }^{3}$ W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

What is known about 2D-KnapsAck?

- NP-Hard (by reduction to Knapsack)
- Even W[1]-hard parameterized by k^{1}
${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019
${ }^{2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015
${ }^{3}$ W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

What is known about 2D-KnapsAck?

- NP-Hard (by reduction to Knapsack)
- Even W[1]-hard parameterized by k^{1}
- Focus on the unary variant (w.r.t. dimensions of the box)
${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019
${ }^{2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015
${ }^{3}$ W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

What is known about 2D-KnapsAck?

- NP-Hard (by reduction to Knapsack)
- Even W[1]-hard parameterized by k^{1}
- Focus on the unary variant (w.r.t. dimensions of the box)
- In this setting:
${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019
${ }^{2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015
${ }^{3}$ W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

What is known about 2D-KnAPSACK?

- NP-Hard (by reduction to Knapsack)
- Even W[1]-hard parameterized by k^{1}
- Focus on the unary variant (w.r.t. dimensions of the box)
- In this setting:
- QPTAS found ${ }^{2}$
${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019
${ }^{2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015
${ }^{3}$ W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

What is known about 2D-KnapsAck?

- NP-Hard (by reduction to Knapsack)
- Even W[1]-hard parameterized by k^{1}
- Focus on the unary variant (w.r.t. dimensions of the box)
- In this setting:
- QPTAS found ${ }^{2}$
- Best approximation factor in polytime ${ }^{3}: 4 / 3+\varepsilon$
${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019
${ }^{2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015
${ }^{3}$ W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

What is known about 2D-KnapsAck?

- NP-Hard (by reduction to Knapsack)
- Even W[1]-hard parameterized by k^{1}
- Focus on the unary variant (w.r.t. dimensions of the box)
- In this setting:
- QPTAS found ${ }^{2}$
- Best approximation factor in polytime ${ }^{3}: 4 / 3+\varepsilon$
- PTAS?
${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019
${ }^{2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015
${ }^{3}$ W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

Parameterized Approximation Schemes

A parameterized approximation scheme (PAS):
${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

Parameterized Approximation Schemes

A parameterized approximation scheme (PAS):

- finds a packing of size $\geq(1-\varepsilon) k$
${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

Parameterized Approximation Schemes

A parameterized approximation scheme (PAS):

- finds a packing of size $\geq(1-\varepsilon) k$
- or correctly concludes \nexists packing of size k,
${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

Parameterized Approximation Schemes

A parameterized approximation scheme (PAS):

- finds a packing of size $\geq(1-\varepsilon) k$
- or correctly concludes \nexists packing of size k,
- and runs in time $f_{\varepsilon}(k) \cdot n^{\mathcal{O}_{\varepsilon}(1)}$.
${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

Parameterized Approximation Schemes

A parameterized approximation scheme (PAS):

- finds a packing of size $\geq(1-\varepsilon) k$
- or correctly concludes $\#$ packing of size k,
- and runs in time $f_{\varepsilon}(k) \cdot n^{\mathcal{O}_{\varepsilon}(1)}$.

Prior work: $k^{\mathcal{O}(k / \varepsilon)} \cdot n^{\mathcal{O}\left(1 / \varepsilon^{3}\right)}$ when allowing 90° rotations ${ }^{1}$

[^0]
Parameterized Approximation Schemes

A parameterized approximation scheme (PAS):

- finds a packing of size $\geq(1-\varepsilon) k$
- or correctly concludes \exists packing of size k,
- and runs in time $f_{\varepsilon}(k) \cdot n^{\mathcal{O}_{\varepsilon}(1)}$.

Prior work: $k^{\mathcal{O}(k / \varepsilon)} \cdot n^{\mathcal{O}\left(1 / \varepsilon^{3}\right)}$ when allowing 90° rotations ${ }^{1}$

[^1]
Our Contribution

Theorem

2D-Knapsack admits a PAS under the following assuptions:

Our Contribution

Theorem

2D-KnAPSACK admits a PAS under the following assuptions:
\leq Integral, polynomially bounded sidelengths (unary version)

Our Contribution

Theorem

2D-Knapsack admits a PAS under the following assuptions:
\leq Integral, polynomially bounded sidelengths (unary version)
\leftrightarrow Every rectangle is wide (width \geq height)

Our Contribution

Theorem

2D-Knapsack admits a PAS under the following assuptions:
\leq Integral, polynomially bounded sidelengths (unary version)
\leftrightarrow Every rectangle is wide (width \geq height)

Our Contribution

Theorem

2D-Knapsack admits a PAS under the following assuptions:
\leq Integral, polynomially bounded sidelengths (unary version)
\leftrightarrow Every rectangle is wide (width \geq height)

E. Box aspect ratio is bounded by δ

Our approach

(1) Remove all small rectangles
\Longrightarrow keep only rectangles of substantial width (width \geq box width $/ g(k, \varepsilon)$)

Our approach

(1) Remove all small rectangles
\Longrightarrow keep only rectangles of substantial width (width \geq box width $/ g(k, c)$)
(1) Wide assumption + remove 1 big rectangle \Longrightarrow keep only rectangles of substantial width (width \geq box width $/ g(k, \varepsilon)$)

Our approach

(1) Remove all small rectangles
\Longrightarrow keep only rectangles of substantial width (width \geq box width $/ g(k, c)$)
(1) Wide assumption + remove 1 big rectangle \Longrightarrow keep only rectangles of substantial width (width \geq box width $/ g(k, \varepsilon)$)
(2) Substantial width + remove εk rectangles \Longrightarrow WLOG, solution structured

Our approach

(1) Remove all small rectangles
\Longrightarrow keep only rectangles of substantial width (width \geq box width $/ g(k, c)$)
(1) Wide assumption + remove 1 big rectangle \Longrightarrow keep only rectangles of substantial width (width \geq box width $/ g(k, \varepsilon)$)
(2) Substantial width + remove εk rectangles \Longrightarrow WLOG, solution structured
(3) Dynamic Programming + color coding
\Longrightarrow find the structured solution

The structural lemma

If all rectangles have substantial width, by deleting εk rectangles:

The structural lemma

If all rectangles have substantial width, by deleting εk rectangles:

The structural lemma

If all rectangles have substantial width, by deleting εk rectangles:

The structural lemma

If all rectangles have substantial width, by deleting εk rectangles:

The structural lemma

If all rectangles have substantial width, by deleting εk rectangles:

Brief aside: rounded rectangles

Definition

Rounding a rectangle to a multiple of $\ell=N_{1} / f(k, \delta)$.

Brief aside: rounded rectangles

Definition

Rounding a rectangle to a multiple of $\ell=N_{1} / f(k, \delta)$.

Brief aside: rounded rectangles

Definition

Rounding a rectangle to a multiple of $\ell=N_{1} / f(k, \delta)$.

Properties ©

(1) Interesting rectangles: have one of the k smallest height for their own width.

Brief aside: rounded rectangles

Definition

Rounding a rectangle to a multiple of $\ell=N_{1} / f(k, \delta)$.

Properties ©

(1) Interesting rectangles: have one of the k smallest height for their own width.
(2) Bounded number of possible widths: $\leq N_{1} / \ell=f(k, \delta)$.

Brief aside: rounded rectangles

Definition

Rounding a rectangle to a multiple of $\ell=N_{1} / f(k, \delta)$.

Properties $@$

(1) Interesting rectangles: have one of the k smallest height for their own width.
(2) Bounded number of possible widths: $\leq N_{1} / \ell=f(k, \delta)$.
(3) Bounded amount of interesting rounded rectangles \Longrightarrow brute force.

Putting it all together

(1) Remove ≤ 1 rectangle: reduction to rectangles of substantial width.

Putting it all together

(1) Remove ≤ 1 rectangle: reduction to rectangles of substantial width.
(2) DP on possible regions: find a structured solution of size $(1-\varepsilon) k$.

Putting it all together

(1) Remove ≤ 1 rectangle: reduction to rectangles of substantial width.
(2) DP on possible regions: find a structured solution of size $(1-\varepsilon) k$.
(3) Inside each region: solve independently with color-coding, to avoid repetition between regions.

Putting it all together

(1) Remove ≤ 1 rectangle: reduction to rectangles of substantial width.
(2) DP on possible regions: find a structured solution of size $(1-\varepsilon) k$.
(3) Inside each region: solve independently with color-coding, to avoid repetition between regions.
(4) You've found a good solution $)$

Putting it all together

(1) Remove ≤ 1 rectangle: reduction to rectangles of substantial width.
(2) DP on possible regions: find a structured solution of size $(1-\varepsilon) k$.
(3) Inside each region: solve independently with color-coding, to avoid repetition between regions.
(4) You've found a good solution $)$

```
Theorem
2D-KnAPSACK admits a PAS under the following assuptions:
\(\leq\) Unary setting
\(\leftrightarrow\) Every rectangle is wide
E. Box aspect ratio is bounded
```


Conclusion

- PAS under assumptions (unary setting, wide, bounded aspect ratio)

Conclusion

- PAS under assumptions (unary setting, wide, bounded aspect ratio)
- Open question:
? Find a PAS without the wide assumption

Conclusion

- PAS under assumptions (unary setting, wide, bounded aspect ratio)
- Open question:
? Find a PAS without the wide assumption
- Wide assumption necessary!

A Guarantees reduction to rectangles of substantial width.

Thank You

Thanks for listening!

[^0]: ${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

[^1]: ${ }^{1}$ F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

