A parameterized approximation scheme for the 2D-Knapsack problem with wide items Mathieu Mari Timothé Picavet Michał Pilipczuk University of Warsaw and IDEAS-NCBR ENS de Lyon University of Warsaw Now at LaBRI, Bordeaux Now at LIRMM, Montpellier ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 ²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015 ³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021 • NP-Hard (by reduction to KNAPSACK) ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 ²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015 ³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021 - NP-Hard (by reduction to KNAPSACK) - Even W[1]-hard parameterized by k^1 ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 $^{^2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015 ³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021 - NP-Hard (by reduction to KNAPSACK) - Even W[1]-hard parameterized by k^1 - Focus on the unary variant (w.r.t. dimensions of the box) ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 ²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015 ³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021 - NP-Hard (by reduction to KNAPSACK) - Even W[1]-hard parameterized by k^1 - Focus on the unary variant (w.r.t. dimensions of the box) - In this setting: ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 $^{^2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015 ³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021 - NP-Hard (by reduction to KNAPSACK) - Even W[1]-hard parameterized by k^1 - Focus on the unary variant (w.r.t. dimensions of the box) - In this setting: - QPTAS found² ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 ²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015 ³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021 - NP-Hard (by reduction to KNAPSACK) - Even W[1]-hard parameterized by k^1 - Focus on the unary variant (w.r.t. dimensions of the box) - In this setting: - QPTAS found² - Best approximation factor in polytime³: $4/3 + \varepsilon$ ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 ²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015 ³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021 - NP-Hard (by reduction to KNAPSACK) - Even W[1]-hard parameterized by k^1 - Focus on the unary variant (w.r.t. dimensions of the box) - In this setting: - QPTAS found² - Best approximation factor in polytime³: $4/3 + \varepsilon$ - PTAS? ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 ²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015 ³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021 A parameterized approximation scheme (PAS): ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 A parameterized approximation scheme (PAS): • finds a packing of size $\geq (1 - \varepsilon)k$ ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 A parameterized approximation scheme (PAS): - finds a packing of size $\geq (1 \varepsilon)k$ - or correctly concludes \nexists packing of size k, ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 A parameterized approximation scheme (PAS): - finds a packing of size $\geq (1-\varepsilon)k$ - or correctly concludes \nexists packing of size k, - and runs in time $f_{\varepsilon}(k) \cdot n^{\mathcal{O}_{\varepsilon}(1)}$. ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 A parameterized approximation scheme (PAS): - finds a packing of size $\geq (1-\varepsilon)k$ - or correctly concludes \nexists packing of size k, - and runs in time $f_{\varepsilon}(k) \cdot n^{\mathcal{O}_{\varepsilon}(1)}$. Prior work: $k^{\mathcal{O}(k/\varepsilon)} \cdot n^{\mathcal{O}(1/\varepsilon^3)}$ when allowing 90° rotations¹ ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 A parameterized approximation scheme (PAS): - finds a packing of size $\geq (1-\varepsilon)k$ - or correctly concludes \nexists packing of size k, - and runs in time $f_{\varepsilon}(k) \cdot n^{\mathcal{O}_{\varepsilon}(1)}$. Prior work: $k^{\mathcal{O}(k/\varepsilon)} \cdot n^{\mathcal{O}(1/\varepsilon^3)}$ when allowing 90° rotations¹ ¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019 #### Theorem 2D-Knapsack admits a PAS under the following assuptions: #### Theorem 2D-KNAPSACK admits a PAS under the following assuptions: Integral, polynomially bounded sidelengths (unary version) #### **Theorem** 2D-KNAPSACK admits a PAS under the following assuptions: - Integral, polynomially bounded sidelengths (unary version) - ➡ Every rectangle is wide (width ≥ height) #### Theorem 2D-KNAPSACK admits a PAS under the following assuptions: - Integral, polynomially bounded sidelengths (unary version) - ➡ Every rectangle is wide (width ≥ height) #### **Theorem** 2D-KNAPSACK admits a PAS under the following assuptions: - Integral, polynomially bounded sidelengths (unary version) - ➡ Every rectangle is wide (width ≥ height) lacksquare Box aspect ratio is bounded by δ 1 Remove all small rectangles \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$) - 1 Remove all small rectangles \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$) - 1 Remove all small rectangles \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$) - ① Wide assumption + remove 1 big rectangle \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$) - **2** Substantial width + remove εk rectangles \Rightarrow WLOG, solution structured - 1 Remove all small rectangles \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$) - ① Wide assumption + remove 1 big rectangle \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$) - **2** Substantial width + remove εk rectangles \Rightarrow WLOG, solution structured - 3 Dynamic Programming + color coding ⇒ find the structured solution #### Definition Rounding a rectangle to a multiple of $\ell = N_1/f(k, \delta)$. #### Definition Rounding a rectangle to a multiple of $\ell = N_1/f(k, \delta)$. #### Definition Rounding a rectangle to a multiple of $\ell = N_1/f(k, \delta)$. ### Properties **Q** floor Interesting rectangles: have one of the k smallest height for their own width. #### Definition Rounding a rectangle to a multiple of $\ell = N_1/f(k, \delta)$. ### Properties **Q** - 1 Interesting rectangles: have one of the *k* smallest height for their own width. - **2** Bounded number of possible widths: $\leq N_1/\ell = f(k, \delta)$. #### Definition Rounding a rectangle to a multiple of $\ell = N_1/f(k, \delta)$. ### Properties **Q** - 1 Interesting rectangles: have one of the *k* smallest height for their own width. - **2** Bounded number of possible widths: $\leq N_1/\ell = f(k, \delta)$. - 3 Bounded amount of interesting rounded rectangles \implies brute force. $\textbf{ 1} \ \, \text{Remove} \leq 1 \ \, \text{rectangle: reduction to rectangles of substantial width}.$ - $oldsymbol{0}$ Remove ≤ 1 rectangle: reduction to rectangles of substantial width. - **2** DP on possible regions: find a structured solution of size $(1 \varepsilon)k$. - $oldsymbol{0}$ Remove ≤ 1 rectangle: reduction to rectangles of substantial width. - **2** DP on possible regions: find a structured solution of size $(1-\varepsilon)k$. - 3 Inside each region: solve independently with color-coding, to avoid repetition between regions. - $oldsymbol{0}$ Remove ≤ 1 rectangle: reduction to rectangles of substantial width. - $oldsymbol{2}$ DP on possible regions: find a structured solution of size (1-arepsilon)k . - 3 Inside each region: solve independently with color-coding, to avoid repetition between regions. - 4 You've found a good solution 😉 - $oldsymbol{1}$ Remove ≤ 1 rectangle: reduction to rectangles of substantial width. - $oldsymbol{arrho}$ DP on possible regions: find a structured solution of size (1-arepsilon)k . - Inside each region: solve independently with color-coding, to avoid repetition between regions. - 4 You've found a good solution 😉 #### **Theorem** 2D-Knapsack admits a PAS under the following assuptions: - Unary setting - ← Every rectangle is wide - Box aspect ratio is bounded ### Conclusion PAS under assumptions (unary setting, wide, bounded aspect ratio) ### Conclusion - PAS under assumptions (unary setting, wide, bounded aspect ratio) - Open question: - **?** Find a PAS without the wide assumption #### Conclusion - PAS under assumptions (unary setting, wide, bounded aspect ratio) - Open question: - **?** Find a PAS without the wide assumption - Wide assumption necessary! - ▲ Guarantees reduction to rectangles of substantial width. ### Thank You Thanks for listening!