A parameterized approximation scheme for the 2D-Knapsack problem with wide items

Mathieu Mari

Timothé Picavet

Michał Pilipczuk

University of Warsaw and IDEAS-NCBR

ENS de Lyon

University of Warsaw

Now at LaBRI, Bordeaux

Now at LIRMM, Montpellier

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015

³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

• NP-Hard (by reduction to KNAPSACK)

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015

³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

- NP-Hard (by reduction to KNAPSACK)
- Even W[1]-hard parameterized by k^1

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

 $^{^2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015

³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

- NP-Hard (by reduction to KNAPSACK)
- Even W[1]-hard parameterized by k^1
- Focus on the unary variant (w.r.t. dimensions of the box)

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015

³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

- NP-Hard (by reduction to KNAPSACK)
- Even W[1]-hard parameterized by k^1
- Focus on the unary variant (w.r.t. dimensions of the box)
- In this setting:

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

 $^{^2}$ A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015

³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

- NP-Hard (by reduction to KNAPSACK)
- Even W[1]-hard parameterized by k^1
- Focus on the unary variant (w.r.t. dimensions of the box)
- In this setting:
 - QPTAS found²

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015

³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

- NP-Hard (by reduction to KNAPSACK)
- Even W[1]-hard parameterized by k^1
- Focus on the unary variant (w.r.t. dimensions of the box)
- In this setting:
 - QPTAS found²
 - Best approximation factor in polytime³: $4/3 + \varepsilon$

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015

³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

- NP-Hard (by reduction to KNAPSACK)
- Even W[1]-hard parameterized by k^1
- Focus on the unary variant (w.r.t. dimensions of the box)
- In this setting:
 - QPTAS found²
 - Best approximation factor in polytime³: $4/3 + \varepsilon$
- PTAS?

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

²A. Adamaszek, A. Wiese. "A quasi-PTAS for the Two-Dimensional Geometric Knapsack problem". SODA 2015

³W. Gálvez et al. "Improved Approximation Algorithms for 2-Dimensional Knapsack: Packing into Multiple L-Shapes, Spirals, and More". SoCG 2021

A parameterized approximation scheme (PAS):

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

A parameterized approximation scheme (PAS):

• finds a packing of size $\geq (1 - \varepsilon)k$

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

A parameterized approximation scheme (PAS):

- finds a packing of size $\geq (1 \varepsilon)k$
- or correctly concludes \nexists packing of size k,

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

A parameterized approximation scheme (PAS):

- finds a packing of size $\geq (1-\varepsilon)k$
- or correctly concludes \nexists packing of size k,
- and runs in time $f_{\varepsilon}(k) \cdot n^{\mathcal{O}_{\varepsilon}(1)}$.

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

A parameterized approximation scheme (PAS):

- finds a packing of size $\geq (1-\varepsilon)k$
- or correctly concludes \nexists packing of size k,
- and runs in time $f_{\varepsilon}(k) \cdot n^{\mathcal{O}_{\varepsilon}(1)}$.

Prior work: $k^{\mathcal{O}(k/\varepsilon)} \cdot n^{\mathcal{O}(1/\varepsilon^3)}$ when allowing 90° rotations¹

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

A parameterized approximation scheme (PAS):

- finds a packing of size $\geq (1-\varepsilon)k$
- or correctly concludes \nexists packing of size k,
- and runs in time $f_{\varepsilon}(k) \cdot n^{\mathcal{O}_{\varepsilon}(1)}$.

Prior work: $k^{\mathcal{O}(k/\varepsilon)} \cdot n^{\mathcal{O}(1/\varepsilon^3)}$ when allowing 90° rotations¹

¹F. Grandoni, S. Kratsch, A. Wiese. "Parameterized Approximation Schemes for Independent Set of Rectangles and Geometric Knapsack". ESA 2019

Theorem

2D-Knapsack admits a PAS under the following assuptions:

Theorem

2D-KNAPSACK admits a PAS under the following assuptions:

Integral, polynomially bounded sidelengths (unary version)

Theorem

2D-KNAPSACK admits a PAS under the following assuptions:

- Integral, polynomially bounded sidelengths (unary version)
- ➡ Every rectangle is wide (width ≥ height)

Theorem

2D-KNAPSACK admits a PAS under the following assuptions:

- Integral, polynomially bounded sidelengths (unary version)
- ➡ Every rectangle is wide (width ≥ height)

Theorem

2D-KNAPSACK admits a PAS under the following assuptions:

- Integral, polynomially bounded sidelengths (unary version)
- ➡ Every rectangle is wide (width ≥ height)

lacksquare Box aspect ratio is bounded by δ

1 Remove all small rectangles \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$)

- 1 Remove all small rectangles \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$)

- 1 Remove all small rectangles \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$)
- ① Wide assumption + remove 1 big rectangle \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$)
- **2** Substantial width + remove εk rectangles \Rightarrow WLOG, solution structured

- 1 Remove all small rectangles \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$)
- ① Wide assumption + remove 1 big rectangle \implies keep only rectangles of substantial width (width \ge box width/ $g(k, \varepsilon)$)
- **2** Substantial width + remove εk rectangles \Rightarrow WLOG, solution structured
- 3 Dynamic Programming + color coding
 ⇒ find the structured solution

Definition

Rounding a rectangle to a multiple of $\ell = N_1/f(k, \delta)$.

Definition

Rounding a rectangle to a multiple of $\ell = N_1/f(k, \delta)$.

Definition

Rounding a rectangle to a multiple of $\ell = N_1/f(k, \delta)$.

Properties **Q**

floor Interesting rectangles: have one of the k smallest height for their own width.

Definition

Rounding a rectangle to a multiple of $\ell = N_1/f(k, \delta)$.

Properties **Q**

- 1 Interesting rectangles: have one of the *k* smallest height for their own width.
- **2** Bounded number of possible widths: $\leq N_1/\ell = f(k, \delta)$.

Definition

Rounding a rectangle to a multiple of $\ell = N_1/f(k, \delta)$.

Properties **Q**

- 1 Interesting rectangles: have one of the *k* smallest height for their own width.
- **2** Bounded number of possible widths: $\leq N_1/\ell = f(k, \delta)$.
- 3 Bounded amount of interesting rounded rectangles \implies brute force.

 $\textbf{ 1} \ \, \text{Remove} \leq 1 \ \, \text{rectangle: reduction to rectangles of substantial width}.$

- $oldsymbol{0}$ Remove ≤ 1 rectangle: reduction to rectangles of substantial width.
- **2** DP on possible regions: find a structured solution of size $(1 \varepsilon)k$.

- $oldsymbol{0}$ Remove ≤ 1 rectangle: reduction to rectangles of substantial width.
- **2** DP on possible regions: find a structured solution of size $(1-\varepsilon)k$.
- 3 Inside each region: solve independently with color-coding, to avoid repetition between regions.

- $oldsymbol{0}$ Remove ≤ 1 rectangle: reduction to rectangles of substantial width.
- $oldsymbol{2}$ DP on possible regions: find a structured solution of size (1-arepsilon)k .
- 3 Inside each region: solve independently with color-coding, to avoid repetition between regions.
- 4 You've found a good solution 😉

- $oldsymbol{1}$ Remove ≤ 1 rectangle: reduction to rectangles of substantial width.
- $oldsymbol{arrho}$ DP on possible regions: find a structured solution of size (1-arepsilon)k .
- Inside each region: solve independently with color-coding, to avoid repetition between regions.
- 4 You've found a good solution 😉

Theorem

2D-Knapsack admits a PAS under the following assuptions:

- Unary setting
- ← Every rectangle is wide
- Box aspect ratio is bounded

Conclusion

PAS under assumptions (unary setting, wide, bounded aspect ratio)

Conclusion

- PAS under assumptions (unary setting, wide, bounded aspect ratio)
- Open question:
 - **?** Find a PAS without the wide assumption

Conclusion

- PAS under assumptions (unary setting, wide, bounded aspect ratio)
- Open question:
 - **?** Find a PAS without the wide assumption
- Wide assumption necessary!
 - ▲ Guarantees reduction to rectangles of substantial width.

Thank You

Thanks for listening!