Induced Disjoint Paths Without an Induced Minor

Pierre Aboulker ¹ Édouard Bonnet ² <u>Timothé Picavet</u> ³ Nicolas Trotignon ²

¹École normale Supérieure

²ENS de Lyon

³LaBRI, U. Bordeaux

k-Disjoint Paths and Disjoint S-T Paths

k-Disjoint Paths (polytime by Robertson and Seymour)

k-Disjoint Paths and Disjoint S-T Paths

k-DISJOINT PATHS (polytime by Robertson and Seymour)

k-Disjoint Paths and Disjoint S-T Paths

k-Disjoint Paths (polytime by Robertson and Seymour)

DISJOINT S-T PATHS (polytime by Menger's theorem)

Induced k-Disjoint Paths

Induced k-Disjoint Paths

Graph minors

H is a minor of G

Induced graph minors

H is an induced minor of G

General graphs: NP-complete even for k=2 / |S|=|T|=2. [Fellows, 1989; Bienstock, 1992]

General graphs : NP-complete even for k=2 / |S|=|T|=2. [Fellows, 1989; Bienstock, 1992] But polytime on:

General graphs: NP-complete even for k=2 / |S|=|T|=2. [Fellows, 1989; Bienstock, 1992]

But polytime on:

General graphs: NP-complete even for k = 2 / |S| = |T| = 2. [Fellows, 1989; Bienstock, 1992]

But polytime on:

General graphs: NP-complete even for k = 2 / |S| = |T| = 2. [Fellows, 1989; Bienstock, 1992]

asteroidal-

triple-free

[Golovach, Paulusma, van Leeuwen, 2022]

But polytime on:

General graphs: NP-complete even for k = 2 / |S| = |T| = 2. [Fellows, 1989, Bienstock, 1992]

But polytime on:

bounded genus [Kobayashi, Kawarabayashi, 2009]

bounded + approximable mim-width

claw-free [Fiala, Kaminski, Lidický, Paulusma, 2012]

asteroidaltriple-free [Golovach, Paulusma, van Leeuwen, 2022]

(theta,wheel)free [Radovanovic, Trotignon,

Vuskovic, 2021]

General graphs: NP-complete even for k = 2 / |S| = |T| = 2. [Fellows, 1989; Bienstock, 1992]

But polytime on:

bounded genus [Kobayashi, Kawarabayashi, 2009]

bounded + approximable mim-width

claw-free [Fiala, Kaminski, Lidický, Paulusma, 2012]

triple-free [Golovach, Paulusma, van Leeuwen, 2022]

(theta,wheel)free

Vuskovic, 2021]

Question (Korhonen and Lokshtanov, 2024)

Is it NP-hard in H-induced-minor-free graphs for some fixed k and H?

General graphs: NP-complete even for k = 2 / |S| = |T| = 2. [Fellows, 1989; Bienstock, 1992]

But polytime on:

bounded + approximable mim-width [Jaffke, Kwon, Telle, 2020]

claw-free [Fiala, Kaminski, Lidický, Paulusma, 20121

asteroidaltriple-free Golovach, Paulusma,

van Leeuwen. 2022l

(theta.wheel)free

[Radovanovic, Trotignon, Vuskovic, 2021

Question (Korhonen and Lokshtanov, 2024)

Is it NP-hard in H-induced-minor-free graphs for some fixed k and H?

We solve this for k=2 and H is the 1-subdivision of K_5 (or of $K_{3,3}$).

String graphs

String graphs = intersection graphs of curves in the plane

String graphs

String graphs = intersection graphs of curves in the plane

Observation

String graphs exclude the 1-subdivision of any non-planar graph as an induced minor.

Theorem (main)

INDUCED DISJOINT S-T PATHS with |S| = |T| = 2 is NP-complete in string graphs that are subgraphs of a constant power of bounded-degree planar graphs.

Theorem (main)

INDUCED DISJOINT S-T PATHS with |S| = |T| = 2 is NP-complete in string graphs that are subgraphs of a constant power of bounded-degree planar graphs.

Corollary

INDUCED 2-DISJOINT PATHS is hard on the same class.

Theorem (main)

INDUCED DISJOINT S-T PATHS with |S| = |T| = 2 is NP-complete in string graphs that are subgraphs of a constant power of bounded-degree planar graphs.

Corollary

INDUCED 2-DISJOINT PATHS is hard on the same class.

 \rightarrow Hard for *H*-induced-minor-free where *H* is the 1-subdivision of K_5 .

8

Theorem (main)

INDUCED DISJOINT S-T PATHS with |S| = |T| = 2 is NP-complete in string graphs that are subgraphs of a constant power of bounded-degree planar graphs.

Corollary

INDUCED 2-DISJOINT PATHS is hard on the same class.

- \rightarrow Hard for *H*-induced-minor-free where *H* is the 1-subdivision of K_5 .
- ightarrow Requires time $2^{\Omega(\sqrt{n})}$ on string graphs of bounded maximum degree and twin-width, unless ETH fails.

8

The reduction: from E3-Occ E3-SAT

Background: H-Induced Subdivision Containement

Background: H-Induced Subdivision Containement

Application: H-Induced Subdivision Containement

Question (Chudnovsky, Seymour, and Trotignon, 2013; Le, 2019)

Is there is a polynomial-time algorithm for H-ISC for any subcubic graph H?

Application: H-Induced Subdivision Containement

Question (Chudnovsky, Seymour, and Trotignon, 2013; Le, 2019)

Is there is a polynomial-time algorithm for H-ISC for any subcubic graph H?

NO!

Background: H-Induced Minor Containement

H-IMC is poly for H =

[Dallard, Dumas, Hilaire, Milanic, Perez, Trotignon, 2024]

[Nguyen, Scott, Seymour, 2024]

almost all 5-vertex graphs

see [Dallard, Dumas, Hilaire, Perez, 2025

Background: H-Induced Minor Containement

H-IMC is poly for H =

[Dallard, Dumas, Hilaire, Milanic, Perez, Trotignon, 2024]

[Nguyen, Scott, Seymour, 2024]

almost all 5-vertex graphs

see [Dallard, Dumas, Hilaire, Perez, 2025

NP-hard for H =

some tree with 2³⁰⁰ vertices

[Korhonen, Lokshtanov, 2024]

Question (Korhonen and Lokshtanov, 2024)

Polytime for a subcubic graph H with every edge incident to a vertex of degree 2?

Question (Korhonen and Lokshtanov, 2024)

Polytime for a subcubic graph H with every edge incident to a vertex of degree 2?

Question (Korhonen and Lokshtanov, 2024)

Polytime for a subcubic graph H with every edge incident to a vertex of degree 2?

NO!

• $2^{\Omega(\sqrt{n})}$ unless ETH fails.

Question (Korhonen and Lokshtanov, 2024)

Polytime for a subcubic graph H with every edge incident to a vertex of degree 2?

NO!

- $2^{\Omega(\sqrt{n})}$ unless ETH fails.
- $2^{\tilde{O}(n^{2/3})}$ by [Korhonen and Lokshtanov, 2024].

Some open questions:

• An hereditary class where INDUCED k-DISJOINT PATHS is NP-complete but INDUCED DISJOINT S-T PATHS is poly?

Some open questions:

- An hereditary class where INDUCED k-DISJOINT PATHS is NP-complete but INDUCED DISJOINT S-T PATHS is poly?
- Restrict the graphs of the main theorem: 1-string graphs possible? (no pair of strings intersects twice)

Some open questions:

- An hereditary class where INDUCED *k*-DISJOINT PATHS is NP-complete but INDUCED DISJOINT *S*-*T* PATHS is poly?
- Restrict the graphs of the main theorem: 1-string graphs possible? (no pair of strings intersects twice)

Conjecture

For any subcubic graph H, H-ISC is in P if and only if H is planar.

Some open questions:

- An hereditary class where INDUCED *k*-DISJOINT PATHS is NP-complete but INDUCED DISJOINT *S*-*T* PATHS is poly?
- Restrict the graphs of the main theorem: 1-string graphs possible? (no pair of strings intersects twice)

Conjecture

For any subcubic graph H, H-ISC is in P if and only if H is planar.

