# Brief Announcement: Distributed Derandomization Revisited

Sameep Dahal <sup>1</sup> Francesco d'Amore <sup>1</sup> Henrik Lievonen <sup>1</sup> <u>Timothé Picavet</u> <sup>1 2</sup> Jukka Suomela <sup>1</sup>

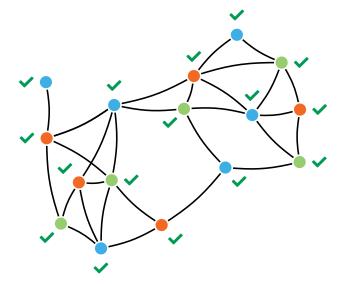
<sup>1</sup>Aalto University, Finland

 $^2 {\sf ENS}$  de Lyon, France (now at LaBRI)

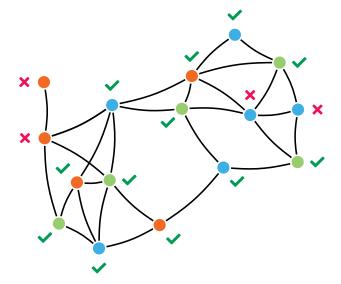
### The LOCAL model

Every node sees a ball of radius T(n)and decides its output.

# Locally checkable labeling problems (LCLs)



# Locally checkable labeling problems (LCLs)



### Prior work and limitations

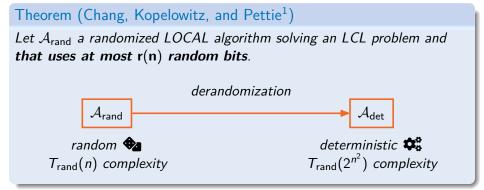
# Theorem (Chang, Kopelowitz, and Pettie<sup>1</sup>)

Let  $A_{rand}$  a randomized LOCAL algorithm solving an LCL problem and that uses at most r(n) random bits.

<sup>&</sup>lt;sup>1</sup>Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized and deterministic complexity in the LOCAL Model. SIAM Journal on Computing, 2019.

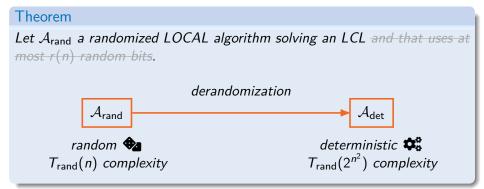
Introduction ○○● Results ○○○ Conclusion ○

### Prior work and limitations



<sup>&</sup>lt;sup>1</sup>Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized and deterministic complexity in the LOCAL Model. SIAM Journal on Computing, 2019.

### Main result



### Main result

#### **Theorem**

Let  $A_{rand}$  a randomized LOCAL algorithm solving an LCL component wise verifiable problem and that uses at most r(n) random bits.



Idea:

### Idea:

• lie about the number of vertices, say  $2^{n^2}$  instead of n,

#### Idea:

- lie about the number of vertices, say  $2^{n^2}$  instead of n,
- and find a good function f : IDs → infinite bit strings s.t.
   A<sub>rand</sub>[f] is correct whp.

#### Idea:

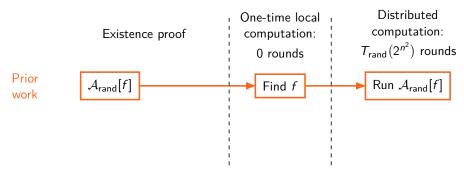
- lie about the number of vertices, say  $2^{n^2}$  instead of n,
- and find a good function f : IDs → infinite bit strings s.t.
   A<sub>rand</sub>[f] is correct whp.

each vertex v uses f(id(v)) as random bit string

#### Idea:

- lie about the number of vertices, say  $2^{n^2}$  instead of n,
- and find a good function  $f: \mathsf{IDs} \to \mathsf{infinite}$  bit strings s.t.  $\mathcal{A}_{\mathsf{rand}}[f]$  is correct whp.

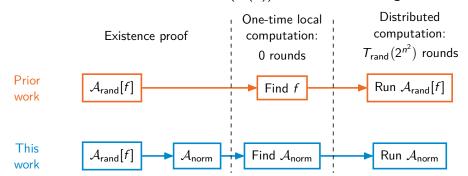
each vertex v uses f(id(v)) as random bit string



#### Idea:

- lie about the number of vertices, say  $2^{n^2}$  instead of n,
- and find a good function f : IDs → infinite bit strings s.t.
   A<sub>rand</sub>[f] is correct whp.

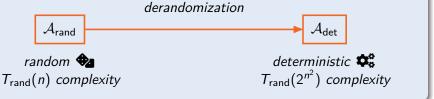
each vertex v uses f(id(v)) as random bit string



### Extensions

#### **Theorem**

Let  $A_{rand}$  a randomized LOCAL algorithm solving an LCL problem on **connected graphs**.



### Conclusion

- No more annoying bounded number of random bits assumption.
- The new derandomized algorithm is uniform in n.
- Generalization of the original theorem to:
  - component-wise verifiable problems,
  - and LCL problems on connected graphs.

### Conclusion

- No more annoying bounded number of random bits assumption.
- The new derandomized algorithm is uniform in n.
- Generalization of the original theorem to:
  - component-wise verifiable problems,
  - and LCL problems on connected graphs.

# Thanks for listening!