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The LOCAL model [Linial 1992]

Every node sees a ball of radius T(n)
and decides its output.
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Locally checkable labeling problems (LCLs) [Naor, Stockmeyer 1995]
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Prior work and limitations

Theorem (Chang, Kopelowitz, and Pettie1)
Let Arand be a randomized LOCAL algorithm solving an LCL problem and that
uses at most r(n) random bits.

Arand

random DICE

Trand(n) complexity

Adet

deterministic COGS

Trand(2n
2
) complexity

derandomization

1Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized
and deterministic complexity in the LOCAL Model. SIAM Journal on Computing, 2019.
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Main result

Theorem (Dahal,1d’Amore, Lievonen, P., Suomela)
Let Arand be a randomized LOCAL algorithm solving an LCL problem and that
uses at most r(n) random bits.
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Main result

Theorem (Dahal,1d’Amore, Lievonen, P., Suomela)
Let Arand be a randomized LOCAL algorithm solving an LCL component-wise
verifiable problem and that uses at most r(n) random bits.
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Proof Strategy

Idea: • lie about the number of vertices, say 2n2 instead of n,
• and find a good function f : IDs → bit strings s.t.

Arand[f ] is correct whp.

each vertex v uses f (id(v)) as random bit string

Prior
work

Arand[f ] Find f Run Arand[f ]

This
work

Arand[f ] Anorm Find Anorm Run Anorm

Existence proof
One-time local
computation:
0 rounds

Distributed
computation:

Trand
(
2n2

)
rounds
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Idea: • lie about the number of vertices, say 2n2 instead of n,
• and find a good function f : IDs → infinite bit strings s.t.

Arand[f ] is correct whp.
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Conclusion

• Derandomization of LOCAL algorithms for LCLs:
• No more annoying bounded number of random bits assumption.
• The new derandomized algorithm is uniform in n.

• Generalization of the original theorem to:
• component-wise verifiable problems,
• and LCL problems on connected graphs.

Thanks for listening!
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