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The LOCAL model [Linial 1992]

Every node sees a ball of radius T(n)
and decides its output.




Locally checkable labeling problems (LCLs) [Naor, Stockmeyer 1995]
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Prior work and limitations

Theorem (Chang, Kopelowitz, and Pettie')
Let A,.nq be a randomized LOCAL algorithm solving an LCL problem and that
uses at most r(n) random bits.

derandomization

Arand > ‘Ade'ﬂ
random €a deterministic g
Trand(N) complexity Trand(znz) complexity

'Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An exponential separation between randomized
and deterministic complexity in the LOCAL Model. SIAM Journal on Computing, 2019.
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Theorem (Dahal, d’Amore, Lievonen, P., Suomela)
Let A,.nq be a randomized LOCAL algorithm solving an LCL problem
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Theorem (Dahal, d’Amore, Lievonen, P., Suomela)
Let A,.nq be a randomized LOCAL algorithm solving a component-wise
verifiable problem

derandomization
Arand > Adet

random €a deterministic g
Trand(N) complexity Trand(znz) complexity



Proof Strategy

Idea: - lie about the number of vertices, say 2" instead of n,
- and find a good function f : IDs — bit strings s.t.
Aranalf] Is correct whp.
L each vertex v uses f(id(v)) as random bit string

One-time local Distributed
computation: computation:
Trana(2") rounds

Existence proof
0 rounds

Prior
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Proof Strategy

Idea: - lie about the number of vertices, say 2" instead of n,
- and find a good function f : IDs — infinite bit strings s.t.
Aranalf] Is correct whp.
L each vertex v uses f(id(v)) as random bit string

One-time local Distributed

Existence proof computation: computation:

' Orounds '  Twana(2") rounds
ot Avandlf] +—p| Find f i RUN Apandlf]
work ! [

This : : !
Aranalf] > Anorm [~ Find Anorm > Run Anorm
work | .




Conclusion

- Derandomization of LOCAL algorithms for LCLs:

- No more annoying bounded number of random bits assumption.
- The new derandomized algorithm is uniform in n.

- Generalization of the original theorem to:

- component-wise verifiable problems,
- and LCL problems on connected graphs.
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Thanks for listening!
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