Brief Announcement: Distributed Derandomization Revisited

Sameep Dahal¹ Francesco d'Amore¹ Henrik Lievonen¹ <u>Timothé Picavet</u>¹² Jukka Suomela¹

¹Aalto University, Finland

²ENS de Lyon, France (now at LaBRI)

[Linial 1992]

Locally checkable labeling problems (LCLs)

[Naor, Stockmeyer 1995]

Locally checkable labeling problems (LCLs)

[Naor, Stockmeyer 1995]

Theorem (Chang, Kopelowitz, and Pettie¹)

Let A_{rand} be a randomized LOCAL algorithm solving an LCL problem and that uses at most r(n) random bits.

¹Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. **An exponential separation between randomized and deterministic complexity in the LOCAL Model.** *SIAM Journal on Computing*, 2019.

Theorem (Chang, Kopelowitz, and Pettie¹)

Let A_{rand} be a randomized LOCAL algorithm solving an LCL problem and that uses at most r(n) random bits.

¹Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. **An exponential separation between randomized and deterministic complexity in the LOCAL Model.** *SIAM Journal on Computing, 2019.*

Main result

Theorem (Dahal, d'Amore, Lievonen, P., Suomela)

Let A_{rand} be a randomized LOCAL algorithm solving an LCL problem and that uses at most r(n) random bits.

Main result

Theorem (Dahal, d'Amore, Lievonen, P., Suomela)

Let A_{rand} be a randomized LOCAL algorithm solving an LCL component-wise verifiable problem and that uses at most r(n) random bits.

Proof Strategy

- Idea: lie about the number of vertices, say 2^{n^2} instead of n,
 - and find a good function $f: IDs \rightarrow bit$ strings s.t. $\mathcal{A}_{rand}[f]$ is correct whp.

- each vertex v uses f(id(v)) as random bit string

Proof Strategy

- Idea: lie about the number of vertices, say 2^{n^2} instead of n,
 - and find a good function $f : IDs \rightarrow infinite$ bit strings s.t. $\mathcal{A}_{rand}[f]$ is correct whp.

- each vertex v uses f(id(v)) as random bit string

Conclusion

- Derandomization of LOCAL algorithms for LCLs:
 - No more annoying bounded number of random bits assumption.
 - The new derandomized algorithm is uniform in *n*.
- \cdot Generalization of the original theorem to:
 - · component-wise verifiable problems,
 - and LCL problems on connected graphs.

Conclusion

- Derandomization of LOCAL algorithms for LCLs:
 - No more annoying bounded number of random bits assumption.
 - The new derandomized algorithm is uniform in n.
- Generalization of the original theorem to:
 - · component-wise verifiable problems,
 - and LCL problems on connected graphs.

Thanks for listening!