Locally finding small dominating sets in $\mathcal{K}_{2,t}$ -minor-free graphs

1

Marthe Bonamy¹ <u>Timothé Picavet</u>¹ Alexandra Wesolek²

¹LaBRI, Bordeaux

²TU Berlin

Distributed algorithms

Distributed view

Distributed algorithms

The LOCAL model

network

The LOCAL model

The LOCAL model

The network is also the input graph!

Every node sees its neighborhood at radius *T* and decides its output.

An example: 3-coloring

An example: 3-coloring

Complexity differences between LOCAL and centralized

Graph minors

H is a minor of G

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
 - Lower bound: 7 (Hilke, Lenzen and Suomela 2014)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
 - Lower bound: 7 (Hilke, Lenzen and Suomela 2014)
- Outerplanar graphs
 - 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)

- General graphs
 - No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- *H*-minor-free graphs
 - Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
 - (11 + ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
 - Lower bound: 7 (Hilke, Lenzen and Suomela 2014)
- Outerplanar graphs
 - 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)
- *K*_{2,t}-minor-free graphs
 - (2t 1)-approximation
 - Generalizes the outerplanar result

The algorithm

• Make G twinless (no vertices s.t. N[u] = N[v])

The algorithm

• Make G twinless (no vertices s.t. N[u] = N[v])

• Return $D_2 = \{v \in V(G) | \nexists u \in V(G - v), N[v] \subseteq N[u]\}$

$$D_2 = \{ v \in V(G) | \nexists u \in V(G - v), N[v] \subseteq N[u] \}$$

Theorem

Let D a MDS of G. If G is $K_{2,t}$ -minor-free, then $|D_2| \leq (2t-1)|D|$.

Lemma

Let D a MDS of G. Then $\exists H \text{ minor of } G \text{ of the form:}$

with:

$$|A| \ge \frac{1}{2}|D_2 \setminus D|$$
$$\forall a \in A, |N(a) \cap D| \ge 2$$

Lemma

Let $D = \{d_1, d_2, \dots, d_k\}$ a MDS of G. Then there exists H minor of G s.t.:

- $\cdot \ V(H) = A \sqcup D \text{ and } A \subseteq D_2 \setminus D$
- $\cdot |A| \geq \frac{1}{2}|D_2 \setminus D|$
- $\forall a \in A, |N(a) \cap D| \ge 2$

Lemma

Let $D = \{d_1, d_2, \dots, d_k\}$ a MDS of G. Then there exists H minor of G s.t.:

- $\cdot \ V(H) = A \sqcup D \text{ and } A \subseteq D_2 \setminus D$
- $\cdot |A| \geq \frac{1}{2}|D_2 \setminus D|$
- $\forall a \in A, |N(a) \cap D| \ge 2$

Proof:

• Contract the branch sets $b_i = N[d_i] \setminus ((D_2 \setminus D) \cup \bigcup_{i < i} N[d_i] \cup \{d_{i+1}, \ldots, d_k\})$

Lemma

Let $D = \{d_1, d_2, \dots, d_k\}$ a MDS of G. Then there exists H minor of G s.t.:

- $\cdot \ V(H) = A \sqcup D \text{ and } A \subseteq D_2 \setminus D$
- $\cdot |A| \geq \frac{1}{2}|D_2 \setminus D|$
- $\forall a \in A, |N(a) \cap D| \ge 2$

Proof:

- Contract the branch sets $b_i = N[d_i] \setminus ((D_2 \setminus D) \cup \bigcup_{i < i} N[d_i] \cup \{d_{i+1}, \ldots, d_k\})$
- Trick: break triangles of the form u, v, d with $u, v \in D_2 \setminus D$ and $d \in D$.

Lemma

Let $D = \{d_1, d_2, \dots, d_k\}$ a MDS of G. Then there exists H minor of G s.t.:

- $\cdot V(H) = A \sqcup D \text{ and } A \subseteq D_2 \setminus D$
- $\cdot |A| \geq \frac{1}{2}|D_2 \setminus D|$
- $\forall a \in A, |N(a) \cap D| \ge 2$

Proof:

- Contract the branch sets $b_i = N[d_i] \setminus ((D_2 \setminus D) \cup \bigcup_{i < i} N[d_i] \cup \{d_{i+1}, \ldots, d_k\})$
- Trick: break triangles of the form u, v, d with $u, v \in D_2 \setminus D$ and $d \in D$.
- For $v \in D_2 \setminus D$, $d_H(v) \ge 2$

Lemma

Let $D = \{d_1, d_2, \dots, d_k\}$ a MDS of G. Then there exists H minor of G s.t.:

- $\cdot \ V(H) = A \sqcup D \text{ and } A \subseteq D_2 \setminus D$
- $\cdot |A| \geq \frac{1}{2}|D_2 \setminus D|$
- $\forall a \in A, |N(a) \cap D| \ge 2$

Proof:

- Contract the branch sets $b_i = N[d_i] \setminus ((D_2 \setminus D) \cup \bigcup_{i < i} N[d_i] \cup \{d_{i+1}, \ldots, d_k\})$
- Trick: break triangles of the form u, v, d with $u, v \in D_2 \setminus D$ and $d \in D$.
- For $v \in D_2 \setminus D$, $d_H(v) \ge 2$
- Contract some edges so that every vertex left in $D_2 \setminus D$ has 2 neighbors in D

inductive argument

Lemma

inductive argument

Lemma

inductive argument

Lemma

Let H be the previous minor. On a $K_{2,t}$ -minor-free graph, $|A| \leq (t-1)|D|$.

(#red edges incident to v) + $|N(v) \cap A| \le t - 1$

with:

 $|A| \ge \frac{1}{2}|D_2 \setminus D|$ $\forall a \in A, |N(a) \cap D| \ge 2$

Lemma

Proof 3: *D*₂ is a dominating set

 $v \notin D_2$

Proof 3: *D*₂ is a dominating set

Take *u* s.t. $N[v] \subsetneq N[u]$ with N[u] maximal.

Proof 3: *D*₂ is a dominating set

Take *u* s.t. $N[v] \subsetneq N[u]$ with N[u] maximal.

Conclusion and perspectives

Conclusion and perspectives

(2t - 1)-approx for $K_{2,t}$ -minor-free graphs

- (2t 1)-approx for $K_{2,t}$ -minor-free graphs
- **Q** Tight? We think there is a 5-approximation on $K_{2,t}$ -minor-free graphs.

- (2t 1)-approx for $K_{2,t}$ -minor-free graphs
- **Q** Tight? We think there is a 5-approximation on $K_{2,t}$ -minor-free graphs.
- ? Open questions: can we get small approximation factors for K_{s,t} and H-minor-free graphs?

- . (2t 1)-approx for $K_{2,t}$ -minor-free graphs
- **Q** Tight? We think there is a 5-approximation on $K_{2,t}$ -minor-free graphs.
- ? Open questions: can we get small approximation factors for K_{s,t} and H-minor-free graphs?

