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LOCAL running time T

Every node sees its neighborhood at
radius T and decides its output.

Algo = A : neighborhood
distance T 7→ return value

local
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An example: 3-coloring
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An example: 3-coloring
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Complexity differences between LOCAL and centralized

Maximum Independent Set
when ∃ universal vertex

Detecting Cycles

Easy in LOCAL
Hard in centralized

Hard in LOCAL
Easy in centralized
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Graph minors

H H′ G

H is a minor of G
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State of the art for MDS with O(1) LOCAL rounds

• General graphs
• No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)

• H-minor-free graphs
• Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny
2021)

• Planar graphs
• (11+ ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
• Lower bound: 7 (Hilke, Lenzen and Suomela 2014)

• Outerplanar graphs
• 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)

• K2,t-minor-free graphs
• (2t− 1)-approximation
• Generalizes the outerplanar result
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The algorithm

• Make G twinless (no vertices s.t. N[u] = N[v])
1 2
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• Return D2 = {v ∈ V(G)|∄u ∈ V(G− v),N[v] ⊆ N[u]}

/∈ D2
∈ D2
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Approximation factor

D2 = {v ∈ V(G)|∄u ∈ V(G− v),N[v] ⊆ N[u]}

/∈ D2
∈ D2

Theorem
Let D a MDS of G. If G is K2,t-minor-free, then |D2| ≤ (2t− 1)|D|.

10



Part 1: approximation factor

Lemma
Let D a MDS of G. Then ∃H minor of G of the form:

A ⊆ D2 \ D

D

with:

|A| ≥ 1
2 |D2 \ D|

∀a ∈ A, |N(a) ∩ D| ≥ 2
11



Proof part 1: approximation factor

Lemma
Let D = {d1,d2, . . . ,dk} a MDS of G. Then there exists H minor of G s.t.:

• V(H) = A t D and A ⊆ D2 \ D
• |A| ≥ 1

2 |D2 \ D|
• ∀a ∈ A, |N(a) ∩ D| ≥ 2

Proof:
• Contract the branch sets bi = N[di] \ ((D2 \ D) ∪

∪
j<i N[di] ∪ {di+1, . . . ,dk})

• Trick: break triangles of the form u, v,d with u, v ∈ D2 \ D and d ∈ D.
• For v ∈ D2 \ D, dH(v) ≥ 2
• Contract some edges so that every vertex left in D2 \ D has 2 neighbors in D

12
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Part 2: bounding |D2 \ D| red edges

Lemma
Let H be the previous minor. On a K2,t-minor-free graph, |A| ≤ (t− 1)|D|.

A

D
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Part 2: bounding |D2 \ D| inductive argument

Lemma
Let H be the previous minor. On a K2,t-minor-free graph, |A| ≤ (t− 1)|D|.

N(v) ∩ A

D \ {v}

A

D
v

≤ t− 1

(#red edges incident to v) + |N(v) ∩ A| ≤ t− 1
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Part 2: bounding |D2 \ D| concluding

A ⊆ D2 \ D

D

with:
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Proof 3: D2 is a dominating set

Take u s.t. N[v] ⊊ N[u] with N[u] maximal.

v /∈ D2

u

∈ D2
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Conclusion and perspectives

(2t− 1)-approx for K2,t-minor-free graphs
Tight? We think there is a 5-approximation on K2,t-minor-free graphs.
Open questions: can we get small approximation factors for Ks,t and
H-minor-free graphs?

Thank you!
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