Locally finding small dominating sets in $K_{2, t}-$ minor-free graphs

Marthe Bonamy ${ }^{1}$ Timothé Picavet ${ }^{1}$ Alexandra Wesolek ${ }^{2}$
${ }^{1}$ LaBRI, Bordeaux
${ }^{2}$ TU Berlin

Distributed algorithms

Distributed algorithms

Centralized view

Focused on computing

Distributed view

Focused on communication

The LOCAL model

The LOCAL model

The LOCAL model

The network is also the input graph!

LOCAL running time T

Every node sees its neighborhood at radius T and decides its output.

LOCAL running time T

Every node sees its neighborhood at radius T and decides its output.

$$
\text { Algo }=\mathcal{A}: \begin{gathered}
\text { distance } \top \\
\text { neighborhood }
\end{gathered} \mapsto \stackrel{\text { local }}{\text { return value }}
$$

An example: 3-coloring

An example: 3-coloring

Complexity differences between LOCAL and centralized

Maximum Independent Set when \exists universal vertex

Detecting Cycles

Easy in LOCAL Hard in centralized

Hard in LOCAL Easy in centralized

Graph minors

H

G
H is a minor of G

State of the art for MDS with $\mathcal{O}(1)$ LOCAL rounds

State of the art for MDS with $\mathcal{O}(1)$ LOCAL rounds

- General graphs
- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)

State of the art for MDS with $\mathcal{O}(1)$ LOCAL rounds

- General graphs
- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- H-minor-free graphs
- Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)

State of the art for MDS with $\mathcal{O}(1)$ LOCAL rounds

- General graphs
- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- H-minor-free graphs
- Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
- (11+ ε)-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
- Lower bound: 7 (Hilke, Lenzen and Suomela 2014)

State of the art for MDS with $\mathcal{O}(1)$ LOCAL rounds

- General graphs
- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- H-minor-free graphs
- Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
- $(11+\varepsilon)$-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
- Lower bound: 7 (Hilke, Lenzen and Suomela 2014)
- Outerplanar graphs
- 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)

State of the art for MDS with $\mathcal{O}(1)$ LOCAL rounds

- General graphs
- No constant factor approximation (Kuhn, Moscibroda and Wattenhofer 2016)
- H-minor-free graphs
- Constant factor approximation, but large factor (Kublenz, Siebertz and Vigny 2021)
- Planar graphs
- $(11+\varepsilon)$-approximation (Heydt, Kublenz, de Mendez, Siebertz, Vigny 2023)
- Lower bound: 7 (Hilke, Lenzen and Suomela 2014)
- Outerplanar graphs
- 5-approximation, tight (Bonamy, Cook, Groenland and Wesolek 2021)
- $K_{2, t}$-minor-free graphs
- (2t - 1)-approximation
- Generalizes the outerplanar result

The algorithm

The algorithm

- Make G twinless (no vertices s.t. $N[u]=N[v]$)

The algorithm

- Make G twinless (no vertices s.t. $N[u]=N[v]$)

- Return $D_{2}=\{v \in V(G) \mid \nexists u \in V(G-v), N[v] \subseteq N[u]\}$

Approximation factor

$$
D_{2}=\{v \in V(G) \mid \nexists u \in V(G-v), N[v] \subseteq N[u]\}
$$

Theorem
Let D a MDS of G. If G is $K_{2, t}$-minor-free, then $\left|D_{2}\right| \leq(2 t-1)|D|$.

Part 1: approximation factor

Lemma

Let D a MDS of G. Then $\exists H$ minor of G of the form:

with:

$$
\begin{gathered}
|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right| \\
\forall a \in A,|N(a) \cap D| \geq 2
\end{gathered}
$$

Proof part 1: approximation factor

Lemma

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ a MDS of G. Then there exists H minor of G s.t.:

- $V(H)=A \sqcup D$ and $A \subseteq D_{2} \backslash D$
- $|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right|$
- $\forall a \in A,|N(a) \cap D| \geq 2$

Proof part 1: approximation factor

Lemma

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ a MDS of G. Then there exists H minor of G s.t.:

- $V(H)=A \sqcup D$ and $A \subseteq D_{2} \backslash D$
- $|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right|$
- $\forall a \in A,|N(a) \cap D| \geq 2$

Proof:

- Contract the branch sets $b_{i}=N\left[d_{i}\right] \backslash\left(\left(D_{2} \backslash D\right) \cup \bigcup_{j<i} N\left[d_{i}\right] \cup\left\{d_{i+1}, \ldots, d_{k}\right\}\right)$

Proof part 1: approximation factor

Lemma

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ a MDS of G. Then there exists H minor of G s.t.:

- $V(H)=A \sqcup D$ and $A \subseteq D_{2} \backslash D$
- $|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right|$
- $\forall a \in A,|N(a) \cap D| \geq 2$

Proof:

- Contract the branch sets $b_{i}=N\left[d_{i}\right] \backslash\left(\left(D_{2} \backslash D\right) \cup \bigcup_{j<i} N\left[d_{i}\right] \cup\left\{d_{i+1}, \ldots, d_{k}\right\}\right)$
- Trick: break triangles of the form u, v, d with $u, v \in D_{2} \backslash D$ and $d \in D$.

Proof part 1: approximation factor

Lemma

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ a MDS of G. Then there exists H minor of G s.t.:

- $V(H)=A \sqcup D$ and $A \subseteq D_{2} \backslash D$
- $|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right|$
- $\forall a \in A,|N(a) \cap D| \geq 2$

Proof:

- Contract the branch sets $b_{i}=N\left[d_{i}\right] \backslash\left(\left(D_{2} \backslash D\right) \cup \bigcup_{j<i} N\left[d_{i}\right] \cup\left\{d_{i+1}, \ldots, d_{k}\right\}\right)$
- Trick: break triangles of the form u, v, d with $u, v \in D_{2} \backslash D$ and $d \in D$.
- For $v \in D_{2} \backslash D, d_{H}(v) \geq 2$

Proof part 1: approximation factor

Lemma

Let $D=\left\{d_{1}, d_{2}, \ldots, d_{k}\right\}$ a MDS of G. Then there exists H minor of G s.t.:

- $V(H)=A \sqcup D$ and $A \subseteq D_{2} \backslash D$
- $|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right|$
- $\forall a \in A,|N(a) \cap D| \geq 2$

Proof:

- Contract the branch sets $b_{i}=N\left[d_{i}\right] \backslash\left(\left(D_{2} \backslash D\right) \cup \bigcup_{j<i} N\left[d_{i}\right] \cup\left\{d_{i+1}, \ldots, d_{k}\right\}\right)$
- Trick: break triangles of the form u, v, d with $u, v \in D_{2} \backslash D$ and $d \in D$.
- For $v \in D_{2} \backslash D, d_{H}(v) \geq 2$
- Contract some edges so that every vertex left in $D_{2} \backslash D$ has 2 neighbors in D

Part 2: bounding $\left|D_{2} \backslash D\right|$

Lemma

Let H be the previous minor. On a $K_{2, t^{-}}$minor-free graph, $|A| \leq(t-1)|D|$.

Part 2: bounding $\left|D_{2} \backslash D\right|$

Lemma

Let H be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.

Part 2: bounding $\left|D_{2} \backslash D\right|$

Lemma

Let H be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.

Part 2: bounding $\left|D_{2} \backslash D\right|$

Lemma

Let H be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.

Part 2: bounding $\left|D_{2} \backslash D\right|$

Lemma

Let H be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.

Part 2: bounding $\left|D_{2} \backslash D\right|$

Lemma

Let H be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.

Part 2: bounding $\left|D_{2} \backslash D\right|$

Lemma

Let H be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.

Part 2: bounding $\left|D_{2} \backslash D\right|$

Lemma

Let H be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.

Part 2: bounding $\left|D_{2} \backslash D\right|$

Lemma

Let H be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.

(\#red edges incident to v) $+|N(v) \cap A| \leq t-1$

Part 2: bounding $\left|D_{2} \backslash D\right|$

concluding

with:

$$
\begin{gathered}
|A| \geq \frac{1}{2}\left|D_{2} \backslash D\right| \\
\forall a \in A,|N(a) \cap D| \geq 2
\end{gathered}
$$

Lemma

Let H be the previous minor. On a $K_{2, t}$-minor-free graph, $|A| \leq(t-1)|D|$.

Proof 3: D_{2} is a dominating set

Proof 3: D_{2} is a dominating set

Take u s.t. $N[v] \subsetneq N[u]$ with $N[u]$ maximal.

Proof 3: D_{2} is a dominating set

Take u s.t. $N[v] \subsetneq N[u]$ with $N[u]$ maximal.

Conclusion and perspectives

Conclusion and perspectives

! (2t-1)-approx for $K_{2, t}$-minor-free graphs

Conclusion and perspectives

! (2t-1)-approx for $K_{2, t}$-minor-free graphs
Q Tight? We think there is a 5 -approximation on $K_{2, t}$-minor-free graphs.

Conclusion and perspectives

! (2t-1)-approx for $K_{2, t}$-minor-free graphs
Q Tight? We think there is a 5 -approximation on $K_{2, t}$-minor-free graphs.
? Open questions: can we get small approximation factors for $K_{s, t}$ and H-minor-free graphs?

Conclusion and perspectives

! (2t-1)-approx for $K_{2, t}$-minor-free graphs
Q Tight? We think there is a 5 -approximation on $K_{2, t}$-minor-free graphs.
? Open questions: can we get small approximation factors for $K_{s, t}$ and H-minor-free graphs?

© Thank you! ©

